WIP-minimal logics and interpolation
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 12 (2015), pp. 7-20.

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper is devoted to the problem of interpolation in extensions of the Johansson minimal logic J. It is proved in [7] that the weak interpolation property WIP is decidable over the minimal logic. In this case all logics with WIP are divided into eight pairwise disjoint intervals. Tops of these intervals, later called as etalon logics, possess a stronger Craig's interpolation property CIP [7]. An axiomatization and a semantic characterization for WIP-minimal logics, that are the least logics of intervals, are found in [8]. The property CIP for six of the eight WIP-minimal logics is stated in [8]. In this paper it will be proved that the property CIP holds for the remaining two logics. Thus all WIP-minimal logics possess the Craig interpolation property CIP.
Keywords: minimal logic, WIP-minimal logic.
Mots-clés : interpolation
@article{SEMR_2015_12_a1,
     author = {L. L. Maksimova and V. F. Yun},
     title = {WIP-minimal logics and interpolation},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {7--20},
     publisher = {mathdoc},
     volume = {12},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2015_12_a1/}
}
TY  - JOUR
AU  - L. L. Maksimova
AU  - V. F. Yun
TI  - WIP-minimal logics and interpolation
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2015
SP  - 7
EP  - 20
VL  - 12
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2015_12_a1/
LA  - ru
ID  - SEMR_2015_12_a1
ER  - 
%0 Journal Article
%A L. L. Maksimova
%A V. F. Yun
%T WIP-minimal logics and interpolation
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2015
%P 7-20
%V 12
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2015_12_a1/
%G ru
%F SEMR_2015_12_a1
L. L. Maksimova; V. F. Yun. WIP-minimal logics and interpolation. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 12 (2015), pp. 7-20. http://geodesic.mathdoc.fr/item/SEMR_2015_12_a1/

[1] I. Johansson, “Der Minimalkalkül, ein reduzierter intuitionistischer Formalismus”, Compositio Mathematica, 4 (1937), 119–136 | MR

[2] W. Craig, “Three uses of Herbrand–Gentzen theorem in relating model theory”, J. Symbolic Logic, 22 (1957), 269–285 | DOI | MR

[3] J. Barwaise, S. Feferman (eds.), Model-theoretic logic, Springer-Verl., New York, 1985 | MR

[4] D. M. Gabbay, L. Maksimova, Interpolation and Definability: Modal and Intuitionistic Logics, Clarendon Press, Oxford, 2005 | MR

[5] L. L. Maksimova, “Teorema Kreiga v superintuitsionistskikh logikakh i amalgamiruemye mnogoobraziya”, Algebra i logika, 16:6 (1977), 643–681 | MR

[6] L. L. Maksimova, “Metod dokazatelstva interpolyatsii v paraneprotivorechivykh rasshireniyakh minimalnoi logiki”, Algebra i logika, 46:5 (2007), 627–648 | MR

[7] L. L. Maksimova, “Razreshimost slabogo interpolyatsionnogo svoistva nad minimalnoi logikoi”, Algebra i logika, 50:2 (2011), 152–188 | MR

[8] L. L. Maksimova, “Negativnaya ekvivalentnost nad minimalnoi logikoi i interpolyatsiya”, Sib. elektron. matem. izv., 11 (2014), 1–17

[9] S. Odintsov, Constructive negations and paraconsistency, Trends in Logic, 26, Springer, Dordrecht, 2008, 242 pp. | MR

[10] L. Maksimova, “Interpolation and Definability over the logic GL”, Studia Logica, 99:1–3 (2011), 249–267 | DOI | MR

[11] K. Segerberg, “Propositional Logics related to Heyting's and Johansson's”, Theoria, 34 (1968), 26–61 | DOI | MR