Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SEMR_2015_12_a0, author = {O. B. Finogenova}, title = {Almost {Lie} solvable associative algebra varieties of finite base rank}, journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a}, pages = {1--6}, publisher = {mathdoc}, volume = {12}, year = {2015}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/SEMR_2015_12_a0/} }
O. B. Finogenova. Almost Lie solvable associative algebra varieties of finite base rank. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 12 (2015), pp. 1-6. http://geodesic.mathdoc.fr/item/SEMR_2015_12_a0/
[1] A. R. Kemer, “Nematrichnye mnogoobraziya”, Algebra i logika, 19:3 (1980), 255–283 | MR
[2] O. Finogenova, “Characterizing non-matrix properties of varieties of algebras in the language of forbidden objects”, Serdica Math. J., 38 (2012), 473–496 | MR
[3] N. Jacobson, PI-algebras, Springer, Berlin, 1975 | MR
[4] R. Pirs, Assotsiativnye algebry, Mir, M., 1986 | MR
[5] I. V. Lvov, Teorema Brauna o radikale konechnoporozhdennoi PI-algebry, preprint No 63, Novosibirsk, 1984
[6] I. V. Lvov, “O mnogoobraziyakh assotsiativnykh kolets, I”, Algebra i logika, 12:3 (1973), 269–297 | MR
[7] A. R. Kemer, “Remarks on the prime varieties”, Israel J. Math., 96 (1996), 341–356 | DOI | MR
[8] A. R. Kemer, “Multilinear components of the prime subvarieties of the variety $Var M_2(F)$”, Algebras and Representation Theory, 4 (2001), 87–104 | DOI | MR
[9] Yu. P. Razmyslov, Tozhdestva algebr i ikh predstavlenii, Nauka, M., 1989 | MR