Almost Lie solvable associative algebra varieties of finite base rank
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 12 (2015), pp. 1-6.

Voir la notice de l'article provenant de la source Math-Net.Ru

For arbitrary elements $x_1,\ x_2, \ldots$ from an algebra we put $V_1(x_1,x_2) = [x_1,x_2]$ where $[x_1,x_2]=x_1x_2 - x_2x_1$ and define inductively $$V_n(x_1,\ldots, x_{2^n}) = [V_{n-1}(x_1,\ldots x_{2^{n-1}}), V_{n-1}(x_{2^{n-1}+1},\ldots x_{2^n})].$$ An algebra or a variety of algebras is called Lie solvable if it satisfies the identity $V_n(x_1,\ldots, x_{2^n})=0$ for some $n$. Let $F$ be an associative commutative noetherian ring with $1$. In the set of varieties of associative $F$-algebras we find all almost Lie solvable varieties of finite base rank.
Keywords: varieties of associative algebras, PI-algebras.
Mots-clés : Lie solvable algebras
@article{SEMR_2015_12_a0,
     author = {O. B. Finogenova},
     title = {Almost {Lie} solvable associative algebra varieties of finite base rank},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {1--6},
     publisher = {mathdoc},
     volume = {12},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2015_12_a0/}
}
TY  - JOUR
AU  - O. B. Finogenova
TI  - Almost Lie solvable associative algebra varieties of finite base rank
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2015
SP  - 1
EP  - 6
VL  - 12
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2015_12_a0/
LA  - ru
ID  - SEMR_2015_12_a0
ER  - 
%0 Journal Article
%A O. B. Finogenova
%T Almost Lie solvable associative algebra varieties of finite base rank
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2015
%P 1-6
%V 12
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2015_12_a0/
%G ru
%F SEMR_2015_12_a0
O. B. Finogenova. Almost Lie solvable associative algebra varieties of finite base rank. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 12 (2015), pp. 1-6. http://geodesic.mathdoc.fr/item/SEMR_2015_12_a0/

[1] A. R. Kemer, “Nematrichnye mnogoobraziya”, Algebra i logika, 19:3 (1980), 255–283 | MR

[2] O. Finogenova, “Characterizing non-matrix properties of varieties of algebras in the language of forbidden objects”, Serdica Math. J., 38 (2012), 473–496 | MR

[3] N. Jacobson, PI-algebras, Springer, Berlin, 1975 | MR

[4] R. Pirs, Assotsiativnye algebry, Mir, M., 1986 | MR

[5] I. V. Lvov, Teorema Brauna o radikale konechnoporozhdennoi PI-algebry, preprint No 63, Novosibirsk, 1984

[6] I. V. Lvov, “O mnogoobraziyakh assotsiativnykh kolets, I”, Algebra i logika, 12:3 (1973), 269–297 | MR

[7] A. R. Kemer, “Remarks on the prime varieties”, Israel J. Math., 96 (1996), 341–356 | DOI | MR

[8] A. R. Kemer, “Multilinear components of the prime subvarieties of the variety $Var M_2(F)$”, Algebras and Representation Theory, 4 (2001), 87–104 | DOI | MR

[9] Yu. P. Razmyslov, Tozhdestva algebr i ikh predstavlenii, Nauka, M., 1989 | MR