A numerical inversion of the ray transform operator in refraction tomography
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 11 (2014), pp. 833-856.

Voir la notice de l'article provenant de la source Math-Net.Ru

We suggest an approach to an approximate inversion of the ray transform operator acting on functions given in Riemannian domain. We construct an inversion algorithm with usage of ray and beam transforms, back-projection operator and Fourier transform. The algorithm is investigated by numerical experiments. The results of simulation are compared with results of the other algorithm constructed on the base of least square method by means of $B$-splines.
Keywords: tomography, ray transform, back-projection operator, least square method, $B$-splines.
Mots-clés : refraction, inversion formula, Fourier transform
@article{SEMR_2014_11_a73,
     author = {E. Yu. Derevtsov and S. V. Maltseva and I. E. Svetov},
     title = {A numerical inversion of the ray transform operator in refraction tomography},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {833--856},
     publisher = {mathdoc},
     volume = {11},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2014_11_a73/}
}
TY  - JOUR
AU  - E. Yu. Derevtsov
AU  - S. V. Maltseva
AU  - I. E. Svetov
TI  - A numerical inversion of the ray transform operator in refraction tomography
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2014
SP  - 833
EP  - 856
VL  - 11
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2014_11_a73/
LA  - ru
ID  - SEMR_2014_11_a73
ER  - 
%0 Journal Article
%A E. Yu. Derevtsov
%A S. V. Maltseva
%A I. E. Svetov
%T A numerical inversion of the ray transform operator in refraction tomography
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2014
%P 833-856
%V 11
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2014_11_a73/
%G ru
%F SEMR_2014_11_a73
E. Yu. Derevtsov; S. V. Maltseva; I. E. Svetov. A numerical inversion of the ray transform operator in refraction tomography. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 11 (2014), pp. 833-856. http://geodesic.mathdoc.fr/item/SEMR_2014_11_a73/

[1] J. Radon, “Über die Bestimmung von Funktionen durch ihre Integrabwerte längs gewisser Mannigfaltigkeiten”, Berichte Sächsische Akademie der Wissenschaften, 69 (1917), 262–277 | Zbl

[2] S. Khelgason, Preobrazovanie Radona, Mir, M., 1983 | MR

[3] S. Deans, The Radon Transform and Some of its Applications, Wiley, New York, 1983 | MR | Zbl

[4] F. Natterer, Matematicheskie aspekty kompyuternoi tomografii, Mir, M., 1990 | MR | Zbl

[5] E. Yu. Derevtsov, A. G. Kleshchev, V. A. Sharafutdinov, “Numerical solution of the emission $2D$-tomography problem for a medium with absorption and refraction”, Journal of Inverse and Ill-Posed Problems, 7:1 (1999), 83–103 | DOI | MR | Zbl

[6] E. Yu. Derevtsov, I. E. Svetov, Yu. S. Volkov, “Ispolzovanie $B$-splainov v zadache emissionnoi $2D$-tomografii v refragiruyuschei srede”, Sibirskii Zhurnal Industrialnoi Matematiki, 11:3 (2008), 45–60 | MR | Zbl

[7] I. E. Svetov, E. Yu. Derevtsov, Yu. S. Volkov, T. Schuster, “A numerical solver based on B-splines for 2D vector field tomography in a refracting medium”, Mathematics and Computers in Simulation, 97 (2014), 207–223 | DOI | MR

[8] A. K. Louis, “Approximate inverse for linear and some nonlinear problems”, Inverse Problems, 12 (1996), 175–190 | DOI | MR | Zbl

[9] E. Yu. Derevtsov, R. Dietz, A. K. Louis, T. Schuster, “Influence of refraction to the accuracy of a solution for the $2D$-emission tomography problem”, Journal of Inverse and Ill-Posed Problems, 8:2 (2000), 161–191 | DOI | MR | Zbl

[10] V. V. Pikalov, “Vosstanovlenie tomogrammy prozrachnoi neodnorodnosti metodom obraschennoi volny”, Optika i Spektroskopiya, 65:4 (1988), 956–962

[11] A. K. Louis, “Eikonal Approximation in Ultrasound Computerized Tomography Signal Processing, II”, Control and Applications, eds. F. A. Grunbaum, J. W. Helton, P. Khargonekar, Springer, New York, 1990, 285–291 | MR

[12] V. G. Romanov, “O vosstanovlenii funktsii cherez integraly po semeistvu krivykh”, Sibirskii Matematicheskii Zhurnal, 8:5 (1967), 1206–1208 | MR | Zbl

[13] A. M. Cormack, “The Radon transform on a family of curves in the plane, I”, Proceedings of AMS, 83:2 (1981), 325–330 | DOI | MR | Zbl

[14] A. M. Cormack, “The Radon transform on a family of curves in the plane, II”, Proceedings of AMS, 86:2 (1982), 293–298 | DOI | MR | Zbl

[15] E. Yu. Derevtsov, S. V. Maltseva, I. E. Svetov, “Priblizhennoe vosstanovlenie funktsii, zadannoi v oblasti s maloi refraktsiei, po ee luchevym integralam”, Sibirskii Zhurnal Industrialnoi Matematiki, 17:4 (2014), 48–59

[16] Yano K., Bokhner S., Krivizna i chisla Betti, Izdatelstvo inostrannoi literatury, M., 1957

[17] V. A. Trenogin, Funktsionalnyi analiz, Nauka, M., 1980 | MR | Zbl

[18] Yu. S. Zavyalov, B. I. Kvasov, V. L. Miroshnichenko, Metody splain funktsii, Nauka, M., 1980, 352 pp. | MR

[19] Dzh. N. Lans, Chislennye metody dlya bystrodeistvuyuschikh mashin, Izdatelstvo inostrannoi literatury, M., 1962

[20] K. Enslein, E. Relston, G. S. Uilf (red.), Statisticheskie metody dlya EVM, Nauka, M., 1986 | MR | Zbl