Some properties of the inverse operator for a tsunami source recovery
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 11 (2014), pp. 532-547.

Voir la notice de l'article provenant de la source Math-Net.Ru

The application of an inversion method to the problem of recovering the initial water elevation field generating a tsunami is considered. This article addresses the usually ill-posed problem of the hydrodynamical inversion of remote measurements of water-level data without any a priori information on a source but its very general spatial localization. The tsunami wave propagation is considered within the scope of the linear shallow-water theory. The ill-posed inverse problem at hand is regularized by means of the least square inversion using the truncated $SVD$ approach. Some properties of inverting operator in the context of retrieving a tsunami source are studied numerically. The goodness of the inversion is defined by the relative errors of the tsunami source reconstruction. As the result, we find the dependence of the goodness of the inversion in terms of the number of receivers, their azimuthal coverage and the frequency band. The applied approach allows one to control the instability of the numerical solution and to obtain an acceptable result in spite of the ill-posedness of the problem and makes it possible to predict a probable quality of the inversion by a certain observational system. This result should be kept in mind when designing a tide-gauge network to study a tsunami source.
Keywords: numerical modeling, regularization, ill-posed inverse problem.
Mots-clés : tsunami, singular value decomposition, r-solution
@article{SEMR_2014_11_a71,
     author = {T. A. Voronina and V. A. Tcheverda and V. V. Voronin},
     title = {Some properties of the inverse operator for a tsunami source recovery},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {532--547},
     publisher = {mathdoc},
     volume = {11},
     year = {2014},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2014_11_a71/}
}
TY  - JOUR
AU  - T. A. Voronina
AU  - V. A. Tcheverda
AU  - V. V. Voronin
TI  - Some properties of the inverse operator for a tsunami source recovery
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2014
SP  - 532
EP  - 547
VL  - 11
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2014_11_a71/
LA  - en
ID  - SEMR_2014_11_a71
ER  - 
%0 Journal Article
%A T. A. Voronina
%A V. A. Tcheverda
%A V. V. Voronin
%T Some properties of the inverse operator for a tsunami source recovery
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2014
%P 532-547
%V 11
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2014_11_a71/
%G en
%F SEMR_2014_11_a71
T. A. Voronina; V. A. Tcheverda; V. V. Voronin. Some properties of the inverse operator for a tsunami source recovery. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 11 (2014), pp. 532-547. http://geodesic.mathdoc.fr/item/SEMR_2014_11_a71/

[1] K. Satake, “Inversion of tsunami waveforms for the estimation of a fault heterogeneity: method and numerical experiments”, J. Phys. Earth, 35 (1987), 241–254 | DOI

[2] C. Pires, P. M. A. Miranda, “Tsunami waveform inversion by adjont methods”, J. Geophys. Res., 106 (2001), 19773–19796 | DOI

[3] S. Tinti, A. Piatanesi, E. Bortolucci, “The finite-element wavepropagator approach and the tsunami inversion problem”, J. Phys. Chem. Earth, 12 (1996), 27–32

[4] D. B. Percival, D. W. Denbo, M. C. Eble, E. Gica, H. O. Mofjeld, M. C. Spillane, L. Tang, V. V. Titov, “Extraction of tsunami source coefficients via inversion of DARTr buoy data”, Natural Hazards, 58 (2011), 567–590 | DOI

[5] T. A. Voronina, V. A. Tcheverda, “Reconstruction of tsunami initial form via level oscillation”, Bull. Nov. Comp. Center, Math. Model.in Geoph., 4 (1998), 127–136 | Zbl

[6] T. A. Voronina, “Determination of spatial distribution of oscillation sources by remote measurements on a finite set of points”, Sib. J. Calc. Math., 3 (2004), 203–211 | Zbl

[7] T. Voronina, “Reconstruction of Initial Tsunami Waveforms by a Trancated SVD Method”, J. Inverse and Ill-posed Problems, 19 (2011), 615–629 | DOI | MR | Zbl

[8] Voronina T. A., “Application of $\mathbf{r}$-solutions to reconstructing an initial tsunami waveform”, Numerical methods and Programming, 14 (2013), 165–174

[9] B. Enquist, A. Majda, “Absorbing boundary conditions for the numerical simulation of waves”, Math. Comp., 139 (1977), 629–654 | DOI | MR

[10] V. M. Kaistrenko, “Inverse problem for reconstruction of tsunami source”, Tsunami Waves. Proc. Sakhalin Compl. Inst., 29 (1972), 82–92

[11] V. A. Cheverda, V. I. Kostin, “$\mathbf{r}$-pseudoinverse for compact operator”, Siberian Electronic Mathematical Reports, 7 (2010), 258–282

[12] Zuhair Nashed M., “Aspects of generalized inverses in analysis and regularization”, Generalized Inverses and Applications, 1988, 193–244 | MR