Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SEMR_2014_11_a71, author = {T. A. Voronina and V. A. Tcheverda and V. V. Voronin}, title = {Some properties of the inverse operator for a tsunami source recovery}, journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a}, pages = {532--547}, publisher = {mathdoc}, volume = {11}, year = {2014}, language = {en}, url = {http://geodesic.mathdoc.fr/item/SEMR_2014_11_a71/} }
TY - JOUR AU - T. A. Voronina AU - V. A. Tcheverda AU - V. V. Voronin TI - Some properties of the inverse operator for a tsunami source recovery JO - Sibirskie èlektronnye matematičeskie izvestiâ PY - 2014 SP - 532 EP - 547 VL - 11 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SEMR_2014_11_a71/ LA - en ID - SEMR_2014_11_a71 ER -
%0 Journal Article %A T. A. Voronina %A V. A. Tcheverda %A V. V. Voronin %T Some properties of the inverse operator for a tsunami source recovery %J Sibirskie èlektronnye matematičeskie izvestiâ %D 2014 %P 532-547 %V 11 %I mathdoc %U http://geodesic.mathdoc.fr/item/SEMR_2014_11_a71/ %G en %F SEMR_2014_11_a71
T. A. Voronina; V. A. Tcheverda; V. V. Voronin. Some properties of the inverse operator for a tsunami source recovery. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 11 (2014), pp. 532-547. http://geodesic.mathdoc.fr/item/SEMR_2014_11_a71/
[1] K. Satake, “Inversion of tsunami waveforms for the estimation of a fault heterogeneity: method and numerical experiments”, J. Phys. Earth, 35 (1987), 241–254 | DOI
[2] C. Pires, P. M. A. Miranda, “Tsunami waveform inversion by adjont methods”, J. Geophys. Res., 106 (2001), 19773–19796 | DOI
[3] S. Tinti, A. Piatanesi, E. Bortolucci, “The finite-element wavepropagator approach and the tsunami inversion problem”, J. Phys. Chem. Earth, 12 (1996), 27–32
[4] D. B. Percival, D. W. Denbo, M. C. Eble, E. Gica, H. O. Mofjeld, M. C. Spillane, L. Tang, V. V. Titov, “Extraction of tsunami source coefficients via inversion of DARTr buoy data”, Natural Hazards, 58 (2011), 567–590 | DOI
[5] T. A. Voronina, V. A. Tcheverda, “Reconstruction of tsunami initial form via level oscillation”, Bull. Nov. Comp. Center, Math. Model.in Geoph., 4 (1998), 127–136 | Zbl
[6] T. A. Voronina, “Determination of spatial distribution of oscillation sources by remote measurements on a finite set of points”, Sib. J. Calc. Math., 3 (2004), 203–211 | Zbl
[7] T. Voronina, “Reconstruction of Initial Tsunami Waveforms by a Trancated SVD Method”, J. Inverse and Ill-posed Problems, 19 (2011), 615–629 | DOI | MR | Zbl
[8] Voronina T. A., “Application of $\mathbf{r}$-solutions to reconstructing an initial tsunami waveform”, Numerical methods and Programming, 14 (2013), 165–174
[9] B. Enquist, A. Majda, “Absorbing boundary conditions for the numerical simulation of waves”, Math. Comp., 139 (1977), 629–654 | DOI | MR
[10] V. M. Kaistrenko, “Inverse problem for reconstruction of tsunami source”, Tsunami Waves. Proc. Sakhalin Compl. Inst., 29 (1972), 82–92
[11] V. A. Cheverda, V. I. Kostin, “$\mathbf{r}$-pseudoinverse for compact operator”, Siberian Electronic Mathematical Reports, 7 (2010), 258–282
[12] Zuhair Nashed M., “Aspects of generalized inverses in analysis and regularization”, Generalized Inverses and Applications, 1988, 193–244 | MR