Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SEMR_2014_11_a69, author = {P. N. Martinyuk}, title = {Meshfree and mesh methods for system of non-linear parabolic equations}, journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a}, pages = {476--493}, publisher = {mathdoc}, volume = {11}, year = {2014}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/SEMR_2014_11_a69/} }
P. N. Martinyuk. Meshfree and mesh methods for system of non-linear parabolic equations. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 11 (2014), pp. 476-493. http://geodesic.mathdoc.fr/item/SEMR_2014_11_a69/
[1] Bokshtein B. S., “Termodiffuziya”, Sorosovskii obrazovatelnyi zhurnal, 4 (1999), 40–43
[2] Briling I. A., “Vliyanie davleniya i temperatury na filtratsionnye svoistva glin”, Svyazannaya voda v dispersnykh sistemakh, 4 (1977), 82–89
[3] Vlasova E. A., Zarubin V. S., Kuvyrkin G. N., Priblizhennye metody matematicheskoi fiziki, Izd-vo MGTU im. N. E. Baumana, M., 2001
[4] Vlasyuk A. P., Kuzlo N. T., “Eksperimentalnye issledovaniya nekotorykh parametrov filtratsii solevykh rastvorov v peschanykh gruntakh”, Melioratsiya i vodnoe khozyaistvo, 87 (2000), 43–46 (na ukr. yazyke)
[5] Vlasyuk A. P., Martynyuk P. N., Matematicheskoe modelirovanie konsolidatsii gruntov v protsesse filtratsii solevykh rastvorov, Natsionalnyi universitet vodnogo khozyaistva i prirodoispolzovaniya, Rovno, 2004 (na ukr. yazyke)
[6] Vlasyuk A. P., Martynyuk P. N., Matematicheskoe modelirovanie konsolidatsii gruntov s uchëtom filtratsii solevykh rastvorov v neizotermicheskikh usloviyakh, Natsionalnyi universitet vodnogo khozyaistva i prirodoispolzovaniya, Rovno, 2008 (na ukr. yazyke)
[7] Vlasyuk A. P., Martynyuk P. N., Chislennoe reshenie zadachi konsolidatsii i filtratsionnogo razrusheniya gruntov v usloviyakh teplo-masoperenosa metodom radialnykh bazisnykh funktsii, Natsionalnyi universitet vodnogo khozyaistva i prirodoispolzovaniya, Rovno, 2010 (na ukr. yazyke)
[8] Vlasyuk A. P., Martynyuk P. N., “Filtratsionnaya konsolidatsiya trëkhfaznykh gruntov s uchëtom polzuchesti skeleta i vliyaniya soleperenosa v neizotermicheskom rezhime”, Matematicheskoe modelirovanie, 4 (2010), 32–56 | MR | Zbl
[9] Vlasyuk A. P., Martynyuk P. N., “Kontaktnyi razmyv i filtratsionnaya konsolidatsiya gruntov v usloviyakh teplo-soleperenosa”, Matematicheskoe modelirovanie, 11 (2012), 97–112 | MR
[10] Goldberg V. M., “Issledovaniya filtratsii v glinakh s uchëtom vliyaniya na etot protsess fiziko-khimicheskikh i termodinamicheskikh uslovii”, Issledovanie filtratsii cherez glinistye porody, 152 (1983), 6–13
[11] Kulchitskii L. I., Goldberg V. M., “Vliyanie mineralizatsii vody na filtratsionnye svoistva peschano-glinistykh porod”, Gidrogeologicheskie voprosy podzemnogo zakhoroneniya promyshlennykh stokov, 14 (1969), 6–22
[12] Marchuk G. I., Agoshkov V. I., Vvedenie v proektsionno-setochnye metody, Nauka, M., 1981 | MR
[13] Michuta O. R., Vlasyuk A. P., Martynyuk P. N., “Modelirovanie vliyaniya khimicheskoi suffozii na filtratsionnuyu konsolidatsiyu zasolennykh gruntov v neizotermicheskikh usloviyakh”, Matematicheskoe modelirovanie, 2 (2013), 3–18
[14] Reltov B. F., Novitskaya N. A., “Osmoticheskie yavleniya v svyaznykh gruntakh pri neravnomernom ikh zasolenii”, Izv. VNIIG, 51 (1954), 94–122
[15] Samarskii A. A., Gulin A. V., Chislennye metody matematicheskoi fiziki, Nauchnyi mir, M., 2003
[16] Fialko A. I., Rudenko F. A., “Issledovanie vliyaniya stepeni mineralizatsii vodnykh rastvorov na filtratsionnye svoistva gornykh porod”, Materialy po geologii, gidrogeologii i geokhimii Ukrainy, RSFSR i Moldavii, 14 (1978), 63–68
[17] Shostak A. V., Fialko A. I., “Vliyanie temperatury na szhimaemost i konsolidatsiyu glinistykh gruntov”, Vestnik Kievskogo un-ta, Seriya: Geologiya, 15 (1997), 47–49 (na ukr. yazyke)
[18] Yaschuk Yu. A., Prokopyshin I. I., “Reshenie zadachi kontaktnogo vzaimodeistviya s ispolzovaniem $h$-adaptivnogo metoda konechnykh elementov”, Sibirskie elektronnye matematicheskie izvestiya, 11 (2014), 220–228
[19] Boztosun I., Charafi A., Zerroukat M., Djidjeli K., “Thin-plate spline radial basis function scheme for advection-diffusion problems”, Electronic Journal of Boundary Elements, 2 (2002), 267–282
[20] Buhmann M. D., “A new class of radial basis functions with compact support”, Mathematics of Computation, 70:233 (2000), 307–318 | DOI | MR
[21] Buhmann M. D., Radial Basis Functions: Theory and Implementations, Cambridge University Press, Cambridge, 2004 | MR
[22] Dirksen C., “Thermo-osmosis through compacted saturated clay membranes”, Soil Sci. Soc. Am. Proc., 33 (1969), 821–826 | DOI
[23] Fasshauer G. F., Meshfree Approximation Methods with MATLAB, World Scientific Publishing Company, 2007 | MR | Zbl
[24] Frey P. J., George P.-L., Mesh Generation, Wiley-ISTE, 2010 | MR
[25] Fritz S. J., “Ideality of clay membranes in osmotic processes: a review”, Clays Clay Miner., 34 (1986), 214–223 | DOI
[26] Iske A., “Radial basis functions: basics, advanced topics and meshfree methods for transport problems”, Rend. Sem. Mat. Univ. Pol. Torino, 61:3 (2003), 247–284 | MR
[27] Kansa E. J., “Multiquadrics — a scattered data approximation scheme with applications to computational fluid-dynamics. I. Surface approximations and partial derivative estimates”, Comput. Math. Appl., 19 (1990), 127–145 | DOI | MR | Zbl
[28] Kansa E. J., “Multiquadrics — a scattered data approximation scheme with applications to computational fluid-dynamics. II: Solutions to parabolic, hyperbolic and elliptic partial differential equations”, Comput. Math. Appl., 19 (1990), 147–161 | DOI | MR | Zbl
[29] Kee B. B. T., Liu G. R., Lu C., “A least-square radial point collocation method for adaptive analysis in linear elasticity”, Engineering Analysis with Boundary Elements, 32 (2008), 440–460 | DOI | Zbl
[30] Keijzer Th. J. S., Chemical osmosis in natural clayey materials, Geologica Ultraiectina, 196, 2000
[31] Kowalczyk P., Mrozowski M., “Mesh-free approach to Helmholtz equation based on radial basis functions”, J. Telecommunications and Information Technology, 2 (2005), 71–74
[32] Liu G.-R., Meshfree Methods: Moving Beyond the Finite Element Method, CRC Press, 2009 | MR | Zbl
[33] Liu X., “Radial point collocation method for solving convection-diffusion problems”, J. Zhejiang Univ. Science A, 7:6 (2006), 1862–1775 | DOI
[34] Malusis M. A., Shackelford C. D., Olsen H. W., “A laboratory apparatus to measure chemico-osmotic efficiency coefficients for clay soils”, Geotechnical Testing Journal, 24:3 (2001), 229–242 | DOI
[35] Neuzil C. E., “Osmotic generation of “anomalous” fluid pressures in geological environments”, Nature, 403 (2000), 182–184 | DOI
[36] Rao S. S., The Finite Element Method in Engineering, Butterworth-Heinemann, 2010
[37] Reddy J. N., Oden J. T., An Introduction to the Mathematical Theory of Finite Elements, Dover Pubns, 2010
[38] S. M. C. Malta, A. F. D. Loula, E. L. M. Garcia, “Numerical analysis of a stabilized finite element method for tracer injection simulations”, Comput. Meth. Appl. Mech. Engineering, 187 (2000), 119–136 | DOI | MR | Zbl
[39] Sarra S. A., “Adaptive radial basis function methods for time dependent partial differential equations”, Appl. Numer. Math., 54:1 (2005), 79–94 | DOI | MR | Zbl
[40] Soler J. M., “The effect of coupled transport phenomena in the Opalinus Clay and implications for radionuclide transport”, J. Contaminant Hydrology, 53 (2001), 63–84 | DOI
[41] Vlasyuk A. P., Martynyuk P. M., “Numerical solution of three-dimensional problems of filtration consolidation with regard for the influence of technogenic factors by the method of radial basis functions”, Journal of Mathematical Sciences, 171:5 (2010), 632–648 | DOI | MR
[42] Vlasyuk A. P., Martynyuk P. M., Fursovych O. R., “Numerical solution of a one-dimensional problem of filtration consolidation of saline soils in a nonisothermal regime”, Journal of Mathematical Sciences, 160:4 (2009), 525–535 | DOI
[43] Zhang F., Zhang R., Kang S., “Estimating temperature effects on water flow in variably saturated soils using activation energy”, Soil Sci. Soc. Am. J., 67 (2003), 1327–1333 | DOI
[44] Zhang X., Liu X.-H., Song K.-Z., Lu M.-W., “Least-squares collocation meshless method”, Int. J. Numer. Methods Engin., 51 (2001), 1089–1100 | DOI | MR | Zbl
[45] Zienkiewicz O. C., Taylor R. L., Zhu J. S., The Finite Element Method: Its Basis and Fundamentals, Butterworth-Heinemann, 2005 | Zbl
[46] Wendland H., “Piecewise polynomial, positive definite and compactly supported radial functions of minimal degree”, Adv. Comput. Math., 4 (1995), 389–396 | DOI | MR | Zbl