Meshfree and mesh methods for system of non-linear parabolic equations
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 11 (2014), pp. 476-493.

Voir la notice de l'article provenant de la source Math-Net.Ru

The first aim of this work was finding an approximate solution for nonlinear free boundary-value problem which describes the mathematical model of filtration consolidation of soil using meshless method with radial basis functions (RBF). The second aim of this work was comparing numerical solutions that have been found by RBF method and finite element method (FEM). The third aim of this work was finding and comparing numerical solutions using different grids. We used an ideas of least square radial point collocation method. The proposed algorithm was tested on two-dimensoinal non-linear boundary value problem for system of three parabolic equations. Errors of difference between FEM's and RBFM's numerical solutions attained maximum in boundary points.
Keywords: nonlinear free boundary-value problem; meshless method; radial basis function; finite element method.
@article{SEMR_2014_11_a69,
     author = {P. N. Martinyuk},
     title = {Meshfree and mesh methods for system of non-linear parabolic equations},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {476--493},
     publisher = {mathdoc},
     volume = {11},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2014_11_a69/}
}
TY  - JOUR
AU  - P. N. Martinyuk
TI  - Meshfree and mesh methods for system of non-linear parabolic equations
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2014
SP  - 476
EP  - 493
VL  - 11
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2014_11_a69/
LA  - ru
ID  - SEMR_2014_11_a69
ER  - 
%0 Journal Article
%A P. N. Martinyuk
%T Meshfree and mesh methods for system of non-linear parabolic equations
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2014
%P 476-493
%V 11
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2014_11_a69/
%G ru
%F SEMR_2014_11_a69
P. N. Martinyuk. Meshfree and mesh methods for system of non-linear parabolic equations. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 11 (2014), pp. 476-493. http://geodesic.mathdoc.fr/item/SEMR_2014_11_a69/

[1] Bokshtein B. S., “Termodiffuziya”, Sorosovskii obrazovatelnyi zhurnal, 4 (1999), 40–43

[2] Briling I. A., “Vliyanie davleniya i temperatury na filtratsionnye svoistva glin”, Svyazannaya voda v dispersnykh sistemakh, 4 (1977), 82–89

[3] Vlasova E. A., Zarubin V. S., Kuvyrkin G. N., Priblizhennye metody matematicheskoi fiziki, Izd-vo MGTU im. N. E. Baumana, M., 2001

[4] Vlasyuk A. P., Kuzlo N. T., “Eksperimentalnye issledovaniya nekotorykh parametrov filtratsii solevykh rastvorov v peschanykh gruntakh”, Melioratsiya i vodnoe khozyaistvo, 87 (2000), 43–46 (na ukr. yazyke)

[5] Vlasyuk A. P., Martynyuk P. N., Matematicheskoe modelirovanie konsolidatsii gruntov v protsesse filtratsii solevykh rastvorov, Natsionalnyi universitet vodnogo khozyaistva i prirodoispolzovaniya, Rovno, 2004 (na ukr. yazyke)

[6] Vlasyuk A. P., Martynyuk P. N., Matematicheskoe modelirovanie konsolidatsii gruntov s uchëtom filtratsii solevykh rastvorov v neizotermicheskikh usloviyakh, Natsionalnyi universitet vodnogo khozyaistva i prirodoispolzovaniya, Rovno, 2008 (na ukr. yazyke)

[7] Vlasyuk A. P., Martynyuk P. N., Chislennoe reshenie zadachi konsolidatsii i filtratsionnogo razrusheniya gruntov v usloviyakh teplo-masoperenosa metodom radialnykh bazisnykh funktsii, Natsionalnyi universitet vodnogo khozyaistva i prirodoispolzovaniya, Rovno, 2010 (na ukr. yazyke)

[8] Vlasyuk A. P., Martynyuk P. N., “Filtratsionnaya konsolidatsiya trëkhfaznykh gruntov s uchëtom polzuchesti skeleta i vliyaniya soleperenosa v neizotermicheskom rezhime”, Matematicheskoe modelirovanie, 4 (2010), 32–56 | MR | Zbl

[9] Vlasyuk A. P., Martynyuk P. N., “Kontaktnyi razmyv i filtratsionnaya konsolidatsiya gruntov v usloviyakh teplo-soleperenosa”, Matematicheskoe modelirovanie, 11 (2012), 97–112 | MR

[10] Goldberg V. M., “Issledovaniya filtratsii v glinakh s uchëtom vliyaniya na etot protsess fiziko-khimicheskikh i termodinamicheskikh uslovii”, Issledovanie filtratsii cherez glinistye porody, 152 (1983), 6–13

[11] Kulchitskii L. I., Goldberg V. M., “Vliyanie mineralizatsii vody na filtratsionnye svoistva peschano-glinistykh porod”, Gidrogeologicheskie voprosy podzemnogo zakhoroneniya promyshlennykh stokov, 14 (1969), 6–22

[12] Marchuk G. I., Agoshkov V. I., Vvedenie v proektsionno-setochnye metody, Nauka, M., 1981 | MR

[13] Michuta O. R., Vlasyuk A. P., Martynyuk P. N., “Modelirovanie vliyaniya khimicheskoi suffozii na filtratsionnuyu konsolidatsiyu zasolennykh gruntov v neizotermicheskikh usloviyakh”, Matematicheskoe modelirovanie, 2 (2013), 3–18

[14] Reltov B. F., Novitskaya N. A., “Osmoticheskie yavleniya v svyaznykh gruntakh pri neravnomernom ikh zasolenii”, Izv. VNIIG, 51 (1954), 94–122

[15] Samarskii A. A., Gulin A. V., Chislennye metody matematicheskoi fiziki, Nauchnyi mir, M., 2003

[16] Fialko A. I., Rudenko F. A., “Issledovanie vliyaniya stepeni mineralizatsii vodnykh rastvorov na filtratsionnye svoistva gornykh porod”, Materialy po geologii, gidrogeologii i geokhimii Ukrainy, RSFSR i Moldavii, 14 (1978), 63–68

[17] Shostak A. V., Fialko A. I., “Vliyanie temperatury na szhimaemost i konsolidatsiyu glinistykh gruntov”, Vestnik Kievskogo un-ta, Seriya: Geologiya, 15 (1997), 47–49 (na ukr. yazyke)

[18] Yaschuk Yu. A., Prokopyshin I. I., “Reshenie zadachi kontaktnogo vzaimodeistviya s ispolzovaniem $h$-adaptivnogo metoda konechnykh elementov”, Sibirskie elektronnye matematicheskie izvestiya, 11 (2014), 220–228

[19] Boztosun I., Charafi A., Zerroukat M., Djidjeli K., “Thin-plate spline radial basis function scheme for advection-diffusion problems”, Electronic Journal of Boundary Elements, 2 (2002), 267–282

[20] Buhmann M. D., “A new class of radial basis functions with compact support”, Mathematics of Computation, 70:233 (2000), 307–318 | DOI | MR

[21] Buhmann M. D., Radial Basis Functions: Theory and Implementations, Cambridge University Press, Cambridge, 2004 | MR

[22] Dirksen C., “Thermo-osmosis through compacted saturated clay membranes”, Soil Sci. Soc. Am. Proc., 33 (1969), 821–826 | DOI

[23] Fasshauer G. F., Meshfree Approximation Methods with MATLAB, World Scientific Publishing Company, 2007 | MR | Zbl

[24] Frey P. J., George P.-L., Mesh Generation, Wiley-ISTE, 2010 | MR

[25] Fritz S. J., “Ideality of clay membranes in osmotic processes: a review”, Clays Clay Miner., 34 (1986), 214–223 | DOI

[26] Iske A., “Radial basis functions: basics, advanced topics and meshfree methods for transport problems”, Rend. Sem. Mat. Univ. Pol. Torino, 61:3 (2003), 247–284 | MR

[27] Kansa E. J., “Multiquadrics — a scattered data approximation scheme with applications to computational fluid-dynamics. I. Surface approximations and partial derivative estimates”, Comput. Math. Appl., 19 (1990), 127–145 | DOI | MR | Zbl

[28] Kansa E. J., “Multiquadrics — a scattered data approximation scheme with applications to computational fluid-dynamics. II: Solutions to parabolic, hyperbolic and elliptic partial differential equations”, Comput. Math. Appl., 19 (1990), 147–161 | DOI | MR | Zbl

[29] Kee B. B. T., Liu G. R., Lu C., “A least-square radial point collocation method for adaptive analysis in linear elasticity”, Engineering Analysis with Boundary Elements, 32 (2008), 440–460 | DOI | Zbl

[30] Keijzer Th. J. S., Chemical osmosis in natural clayey materials, Geologica Ultraiectina, 196, 2000

[31] Kowalczyk P., Mrozowski M., “Mesh-free approach to Helmholtz equation based on radial basis functions”, J. Telecommunications and Information Technology, 2 (2005), 71–74

[32] Liu G.-R., Meshfree Methods: Moving Beyond the Finite Element Method, CRC Press, 2009 | MR | Zbl

[33] Liu X., “Radial point collocation method for solving convection-diffusion problems”, J. Zhejiang Univ. Science A, 7:6 (2006), 1862–1775 | DOI

[34] Malusis M. A., Shackelford C. D., Olsen H. W., “A laboratory apparatus to measure chemico-osmotic efficiency coefficients for clay soils”, Geotechnical Testing Journal, 24:3 (2001), 229–242 | DOI

[35] Neuzil C. E., “Osmotic generation of “anomalous” fluid pressures in geological environments”, Nature, 403 (2000), 182–184 | DOI

[36] Rao S. S., The Finite Element Method in Engineering, Butterworth-Heinemann, 2010

[37] Reddy J. N., Oden J. T., An Introduction to the Mathematical Theory of Finite Elements, Dover Pubns, 2010

[38] S. M. C. Malta, A. F. D. Loula, E. L. M. Garcia, “Numerical analysis of a stabilized finite element method for tracer injection simulations”, Comput. Meth. Appl. Mech. Engineering, 187 (2000), 119–136 | DOI | MR | Zbl

[39] Sarra S. A., “Adaptive radial basis function methods for time dependent partial differential equations”, Appl. Numer. Math., 54:1 (2005), 79–94 | DOI | MR | Zbl

[40] Soler J. M., “The effect of coupled transport phenomena in the Opalinus Clay and implications for radionuclide transport”, J. Contaminant Hydrology, 53 (2001), 63–84 | DOI

[41] Vlasyuk A. P., Martynyuk P. M., “Numerical solution of three-dimensional problems of filtration consolidation with regard for the influence of technogenic factors by the method of radial basis functions”, Journal of Mathematical Sciences, 171:5 (2010), 632–648 | DOI | MR

[42] Vlasyuk A. P., Martynyuk P. M., Fursovych O. R., “Numerical solution of a one-dimensional problem of filtration consolidation of saline soils in a nonisothermal regime”, Journal of Mathematical Sciences, 160:4 (2009), 525–535 | DOI

[43] Zhang F., Zhang R., Kang S., “Estimating temperature effects on water flow in variably saturated soils using activation energy”, Soil Sci. Soc. Am. J., 67 (2003), 1327–1333 | DOI

[44] Zhang X., Liu X.-H., Song K.-Z., Lu M.-W., “Least-squares collocation meshless method”, Int. J. Numer. Methods Engin., 51 (2001), 1089–1100 | DOI | MR | Zbl

[45] Zienkiewicz O. C., Taylor R. L., Zhu J. S., The Finite Element Method: Its Basis and Fundamentals, Butterworth-Heinemann, 2005 | Zbl

[46] Wendland H., “Piecewise polynomial, positive definite and compactly supported radial functions of minimal degree”, Adv. Comput. Math., 4 (1995), 389–396 | DOI | MR | Zbl