On a single class of vortex solutions of nonlinear Schrodinger equation
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 11 (2014), pp. 929-950

Voir la notice de l'article provenant de la source Math-Net.Ru

This work presents a detailed studying one of invariant solutions of Schrodinger equation with cubic nonlinearity. We obtain this solution through the methods of group analysis of differential equations. The analysis of behavior of integral curves of the factor system representing the system of three ordinary differential equations is performed. Both analytical and numerical methods are used. The existence of periodical solutions for particular parameter value is proved. It is shown that in other cases all system trajectories tend asymptotically to some curve in the phase space. This curve, in its turn, is a trajectory for some value of parameter.
Keywords: differential equations, Schrodinger equation, Lie groups
Mots-clés : invariant solutions.
@article{SEMR_2014_11_a65,
     author = {K. K. Izmailova and A. A. Cherevko and A. P. Chupakhin},
     title = {On a single class of vortex solutions of nonlinear {Schrodinger} equation},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {929--950},
     publisher = {mathdoc},
     volume = {11},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2014_11_a65/}
}
TY  - JOUR
AU  - K. K. Izmailova
AU  - A. A. Cherevko
AU  - A. P. Chupakhin
TI  - On a single class of vortex solutions of nonlinear Schrodinger equation
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2014
SP  - 929
EP  - 950
VL  - 11
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2014_11_a65/
LA  - ru
ID  - SEMR_2014_11_a65
ER  - 
%0 Journal Article
%A K. K. Izmailova
%A A. A. Cherevko
%A A. P. Chupakhin
%T On a single class of vortex solutions of nonlinear Schrodinger equation
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2014
%P 929-950
%V 11
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2014_11_a65/
%G ru
%F SEMR_2014_11_a65
K. K. Izmailova; A. A. Cherevko; A. P. Chupakhin. On a single class of vortex solutions of nonlinear Schrodinger equation. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 11 (2014), pp. 929-950. http://geodesic.mathdoc.fr/item/SEMR_2014_11_a65/