Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SEMR_2014_11_a65, author = {K. K. Izmailova and A. A. Cherevko and A. P. Chupakhin}, title = {On a single class of vortex solutions of nonlinear {Schrodinger} equation}, journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a}, pages = {929--950}, publisher = {mathdoc}, volume = {11}, year = {2014}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/SEMR_2014_11_a65/} }
TY - JOUR AU - K. K. Izmailova AU - A. A. Cherevko AU - A. P. Chupakhin TI - On a single class of vortex solutions of nonlinear Schrodinger equation JO - Sibirskie èlektronnye matematičeskie izvestiâ PY - 2014 SP - 929 EP - 950 VL - 11 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SEMR_2014_11_a65/ LA - ru ID - SEMR_2014_11_a65 ER -
%0 Journal Article %A K. K. Izmailova %A A. A. Cherevko %A A. P. Chupakhin %T On a single class of vortex solutions of nonlinear Schrodinger equation %J Sibirskie èlektronnye matematičeskie izvestiâ %D 2014 %P 929-950 %V 11 %I mathdoc %U http://geodesic.mathdoc.fr/item/SEMR_2014_11_a65/ %G ru %F SEMR_2014_11_a65
K. K. Izmailova; A. A. Cherevko; A. P. Chupakhin. On a single class of vortex solutions of nonlinear Schrodinger equation. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 11 (2014), pp. 929-950. http://geodesic.mathdoc.fr/item/SEMR_2014_11_a65/
[1] L. D. Landau, E. M. Lifshits, Teoreticheskaya fizika, v. VIII, Elektrodinamika sploshnykh sred, Nauka, M., 1992 | MR
[2] G. B. Whitham, Linear and Nonlinear Waves, Willey, New York, 1974 | MR | Zbl
[3] L. P. Pitaevskii, S. Stringari, Bose–Einstein condensation, Clarendon Press, Oxford University Press, Oxford, 2003 | MR | Zbl
[4] D. Stuart, “The geodesic hypothesis and non-topological solutions on pseudo-riemannian manifolds”, Ann. Scient. Ec. Norm. Sup., 4-e serie, 37:2 (2004), 312–362 | MR | Zbl
[5] V. E. Zakharov i dr., Teoriya solitonov: Metod obratnoi zadachi, Nauka, M., 1980 | MR
[6] L. V. Ovsyannikov, Gruppovoi analiz differentsialnykh uravnenii, Nauka, M., 1978 | MR
[7] N. H. Ibragimov (ed.), CRC Handbook of Lie group analysis of differential equations, v. 1–3, CRC Press, Boka Raton, 1994–1996 ; ; | MR | Zbl | MR | MR
[8] S. P. Finikov, Metod vneshnikh form Kartana v differentsialnoi geometrii, Gostekhteorizdat, M.–L., 1948
[9] J. F. Pommaret, Systems of partial differential equations and Lie pseudogroups, Mathematics Its Applications, XIV, Gordon and Breach Sc. Publ., 1978 | MR | Zbl
[10] L. V. Ovsyannikov, “Programma PODMODELI. Gazovaya dinamika”, PMM, 58:4 (1994), 30–55 | MR | Zbl
[11] A. P. Chupakhin, Barokhronnye dvizheniya gaza. Obschie svoistva i podmodeli tipov (1,2) i (1,1), Prepr., Institut gidrodinamiki SO RAN, Novosibirsk, 1998
[12] L. V. Ovsyannikov, “O periodicheskikh dvizheniyakh gaza”, PMM, 65:4 (2001), 567–577 | MR | Zbl
[13] L. V. Ovsyannikov, “Osobyi vikhr”, PMTF, 36:3 (1995), 45–52 | MR | Zbl
[14] A. P. Chupakhin, “Singular Vortex in Hydro and Gas Dynamics”, Analytical approaches to multidimensional balance laws, Nova Science Publ. Inc, NY, 2006, 89–118 | MR | Zbl
[15] L. Gagnon, P. Winternitz, “Lie symmetries of a generalised non-linear Schrodinger equation. I: The symmetry group and its subgroups”, J. Phys. A, Math. Gen., 21:7 (1988), 1493–1511 | DOI | MR | Zbl
[16] L. Gagnon, P. Winternitz, “Lie symmetries of a generalised non-linear Schrodinger equation. II: Exact solutions”, J. Phys. A, Math. Gen., 22 (1989), 469–497 | DOI | MR | Zbl
[17] L. Gagnon, B. Grammaticos, A. Ramani, P. Winternitz, “Lie symmetries of a generalised non-linear Schrodinger equation. III: Reductions to third-order ordinary differential equations”, J. Phys. A, Math. Gen., 22 (1989), 469–497 | DOI | MR | Zbl
[18] L. Gagnon, P. Winternitz, “Exact solutions of the cubic and quintic nonlinear Schrodinger equation for a cylindrical geometry”, Physical review A, 39:1 (1989), 296–306 | DOI | MR
[19] V. I. Fuschich i dr., Simmetriinyi analiz i tochnye resheniya nelineinykh uravnenii matematicheskoi fiziki, Nauk. dumka, Kiev, 1989 | MR
[20] K. K. Izmailova, A. P. Chupakhin, “Teoretiko-gruppovye resheniya kubicheskogo uravneniya Shredingera, porozhdennye algebrami simmetrii razmernosti tri”, Nelineinaya dinam., 3:3 (2007), 349–362 | MR
[21] O. I. Bogoyavlenskii, Metody kachestvennoi teorii dinamicheskikh sistem v astrofizike i gazovoi dinamike, Nauka, M., 1980 | MR