On a single class of vortex solutions of nonlinear Schrodinger equation
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 11 (2014), pp. 929-950.

Voir la notice de l'article provenant de la source Math-Net.Ru

This work presents a detailed studying one of invariant solutions of Schrodinger equation with cubic nonlinearity. We obtain this solution through the methods of group analysis of differential equations. The analysis of behavior of integral curves of the factor system representing the system of three ordinary differential equations is performed. Both analytical and numerical methods are used. The existence of periodical solutions for particular parameter value is proved. It is shown that in other cases all system trajectories tend asymptotically to some curve in the phase space. This curve, in its turn, is a trajectory for some value of parameter.
Keywords: differential equations, Schrodinger equation, Lie groups
Mots-clés : invariant solutions.
@article{SEMR_2014_11_a65,
     author = {K. K. Izmailova and A. A. Cherevko and A. P. Chupakhin},
     title = {On a single class of vortex solutions of nonlinear {Schrodinger} equation},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {929--950},
     publisher = {mathdoc},
     volume = {11},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2014_11_a65/}
}
TY  - JOUR
AU  - K. K. Izmailova
AU  - A. A. Cherevko
AU  - A. P. Chupakhin
TI  - On a single class of vortex solutions of nonlinear Schrodinger equation
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2014
SP  - 929
EP  - 950
VL  - 11
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2014_11_a65/
LA  - ru
ID  - SEMR_2014_11_a65
ER  - 
%0 Journal Article
%A K. K. Izmailova
%A A. A. Cherevko
%A A. P. Chupakhin
%T On a single class of vortex solutions of nonlinear Schrodinger equation
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2014
%P 929-950
%V 11
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2014_11_a65/
%G ru
%F SEMR_2014_11_a65
K. K. Izmailova; A. A. Cherevko; A. P. Chupakhin. On a single class of vortex solutions of nonlinear Schrodinger equation. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 11 (2014), pp. 929-950. http://geodesic.mathdoc.fr/item/SEMR_2014_11_a65/

[1] L. D. Landau, E. M. Lifshits, Teoreticheskaya fizika, v. VIII, Elektrodinamika sploshnykh sred, Nauka, M., 1992 | MR

[2] G. B. Whitham, Linear and Nonlinear Waves, Willey, New York, 1974 | MR | Zbl

[3] L. P. Pitaevskii, S. Stringari, Bose–Einstein condensation, Clarendon Press, Oxford University Press, Oxford, 2003 | MR | Zbl

[4] D. Stuart, “The geodesic hypothesis and non-topological solutions on pseudo-riemannian manifolds”, Ann. Scient. Ec. Norm. Sup., 4-e serie, 37:2 (2004), 312–362 | MR | Zbl

[5] V. E. Zakharov i dr., Teoriya solitonov: Metod obratnoi zadachi, Nauka, M., 1980 | MR

[6] L. V. Ovsyannikov, Gruppovoi analiz differentsialnykh uravnenii, Nauka, M., 1978 | MR

[7] N. H. Ibragimov (ed.), CRC Handbook of Lie group analysis of differential equations, v. 1–3, CRC Press, Boka Raton, 1994–1996 ; ; | MR | Zbl | MR | MR

[8] S. P. Finikov, Metod vneshnikh form Kartana v differentsialnoi geometrii, Gostekhteorizdat, M.–L., 1948

[9] J. F. Pommaret, Systems of partial differential equations and Lie pseudogroups, Mathematics Its Applications, XIV, Gordon and Breach Sc. Publ., 1978 | MR | Zbl

[10] L. V. Ovsyannikov, “Programma PODMODELI. Gazovaya dinamika”, PMM, 58:4 (1994), 30–55 | MR | Zbl

[11] A. P. Chupakhin, Barokhronnye dvizheniya gaza. Obschie svoistva i podmodeli tipov (1,2) i (1,1), Prepr., Institut gidrodinamiki SO RAN, Novosibirsk, 1998

[12] L. V. Ovsyannikov, “O periodicheskikh dvizheniyakh gaza”, PMM, 65:4 (2001), 567–577 | MR | Zbl

[13] L. V. Ovsyannikov, “Osobyi vikhr”, PMTF, 36:3 (1995), 45–52 | MR | Zbl

[14] A. P. Chupakhin, “Singular Vortex in Hydro and Gas Dynamics”, Analytical approaches to multidimensional balance laws, Nova Science Publ. Inc, NY, 2006, 89–118 | MR | Zbl

[15] L. Gagnon, P. Winternitz, “Lie symmetries of a generalised non-linear Schrodinger equation. I: The symmetry group and its subgroups”, J. Phys. A, Math. Gen., 21:7 (1988), 1493–1511 | DOI | MR | Zbl

[16] L. Gagnon, P. Winternitz, “Lie symmetries of a generalised non-linear Schrodinger equation. II: Exact solutions”, J. Phys. A, Math. Gen., 22 (1989), 469–497 | DOI | MR | Zbl

[17] L. Gagnon, B. Grammaticos, A. Ramani, P. Winternitz, “Lie symmetries of a generalised non-linear Schrodinger equation. III: Reductions to third-order ordinary differential equations”, J. Phys. A, Math. Gen., 22 (1989), 469–497 | DOI | MR | Zbl

[18] L. Gagnon, P. Winternitz, “Exact solutions of the cubic and quintic nonlinear Schrodinger equation for a cylindrical geometry”, Physical review A, 39:1 (1989), 296–306 | DOI | MR

[19] V. I. Fuschich i dr., Simmetriinyi analiz i tochnye resheniya nelineinykh uravnenii matematicheskoi fiziki, Nauk. dumka, Kiev, 1989 | MR

[20] K. K. Izmailova, A. P. Chupakhin, “Teoretiko-gruppovye resheniya kubicheskogo uravneniya Shredingera, porozhdennye algebrami simmetrii razmernosti tri”, Nelineinaya dinam., 3:3 (2007), 349–362 | MR

[21] O. I. Bogoyavlenskii, Metody kachestvennoi teorii dinamicheskikh sistem v astrofizike i gazovoi dinamike, Nauka, M., 1980 | MR