A conditional stability estimate for solution of an inverse problem for the acoustic equation
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 11 (2014), pp. 142-164
Voir la notice de l'article provenant de la source Math-Net.Ru
We consider the multidimensional inverse problem for the acoustic equation $u_{tt}=c^{2}\Bigl(\Delta u-\nabla\ln\rho\cdot\nabla u\Bigr)$ in a medium filling interior of a cylinder infinite with respect to the variable $z$. We assume that the velocity function $c(r)$ is known. The problem of unique determination of the density function $\rho (r, \varphi, z)$ is considered in the linear approximation. The conditional stability estimation is obtained.
Keywords:
inverse problems, acoustic equation, conditional stability estimate.
@article{SEMR_2014_11_a60,
author = {T. V. Bugueva},
title = {A conditional stability estimate for solution of an inverse problem for the acoustic equation},
journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
pages = {142--164},
publisher = {mathdoc},
volume = {11},
year = {2014},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/SEMR_2014_11_a60/}
}
TY - JOUR AU - T. V. Bugueva TI - A conditional stability estimate for solution of an inverse problem for the acoustic equation JO - Sibirskie èlektronnye matematičeskie izvestiâ PY - 2014 SP - 142 EP - 164 VL - 11 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SEMR_2014_11_a60/ LA - ru ID - SEMR_2014_11_a60 ER -
T. V. Bugueva. A conditional stability estimate for solution of an inverse problem for the acoustic equation. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 11 (2014), pp. 142-164. http://geodesic.mathdoc.fr/item/SEMR_2014_11_a60/