A conditional stability estimate for solution of an inverse problem for the acoustic equation
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 11 (2014), pp. 142-164.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider the multidimensional inverse problem for the acoustic equation $u_{tt}=c^{2}\Bigl(\Delta u-\nabla\ln\rho\cdot\nabla u\Bigr)$ in a medium filling interior of a cylinder infinite with respect to the variable $z$. We assume that the velocity function $c(r)$ is known. The problem of unique determination of the density function $\rho (r, \varphi, z)$ is considered in the linear approximation. The conditional stability estimation is obtained.
Keywords: inverse problems, acoustic equation, conditional stability estimate.
@article{SEMR_2014_11_a60,
     author = {T. V. Bugueva},
     title = {A conditional stability estimate for solution of an inverse problem for the acoustic equation},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {142--164},
     publisher = {mathdoc},
     volume = {11},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2014_11_a60/}
}
TY  - JOUR
AU  - T. V. Bugueva
TI  - A conditional stability estimate for solution of an inverse problem for the acoustic equation
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2014
SP  - 142
EP  - 164
VL  - 11
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2014_11_a60/
LA  - ru
ID  - SEMR_2014_11_a60
ER  - 
%0 Journal Article
%A T. V. Bugueva
%T A conditional stability estimate for solution of an inverse problem for the acoustic equation
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2014
%P 142-164
%V 11
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2014_11_a60/
%G ru
%F SEMR_2014_11_a60
T. V. Bugueva. A conditional stability estimate for solution of an inverse problem for the acoustic equation. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 11 (2014), pp. 142-164. http://geodesic.mathdoc.fr/item/SEMR_2014_11_a60/

[1] A. S. Blagoveschenskii, “O lokalnom metode resheniya nestatsionarnoi obratnoi zadachi dlya neodnorodnoi sredy”, Trudy MIAN SSSR, 115, 1971, 21–32

[2] V. G. Romanov, Inverse Problems of Mathematical Physics, VNU Sciences Press, Utrecht, 1987 | MR

[3] T. V. Bugueva, “A linearized inverse problem for the wave equation in a sphere”, Journal of Inverse and Ill-Posed Problems, 4:3 (1996), 171–189 | DOI | MR | Zbl

[4] S. I. Kabanikhin, Obratnaya zadacha dlya uravneniya akustiki. (Opredelenie plotnosti sredy), Preprint, No 246, Izd-vo VTs SO AN SSSR, Novosibirsk, 1980

[5] S. I. Kabanikhin, “O zadache opredeleniya koeffitsientov uravneniya akustiki”, Neklassicheskie Problemy Matematicheskoi Fiziki, Izd-vo VTs SO AN SSSR, Novosibirsk, 1981, 93–100 | MR

[6] S. I. Kabanikhin, “Priblizhennyi metod resheniya obratnoi zadachi dlya uravneniya akustiki”, Priblizhennye metody resheniya i voprosy korrektnosti obratnykh zadach, Izd-vo VTs SO AN SSSR, Novosibirsk, 1981, 52–62

[7] P. E. Sacks, “The inverse problem for a weakly inhomogeneous two–dimensional acoustic medium”, SIAM J. Appl. Math., 48:5 (1988), 1167–1193 | DOI | MR | Zbl

[8] P. Sacks, W. Symes, “Uniqueness and continuous dependence for a multidimensional hyperbolic inverse problem”, Comm. in Partial Differential Equations, 6:10 (1985), 635–676 | DOI | MR

[9] T. V. Bugueva, “Some inverse problems for acoustic equation in cylindrical domain”, Journal of Inverse and Ill-Posed Problems, 12:6 (2004), 581–596 | DOI | MR | Zbl

[10] E. V. Melnikov, Osnovy matematicheskogo analiza, v. II, Integraly i ryady, Omskii gos. un-t, Omsk, 2012

[11] A. Zigmund, Trigonometricheskie ryady, v. 1, Mir, M., 1965 | MR