Cayley--Deza graphs with fewer than 60 vertices
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 11 (2014), pp. 268-310.

Voir la notice de l'article provenant de la source Math-Net.Ru

Deza graph, which is the Cayley graph is called the Cayley–Deza graph. The paper describes all non-isomorphic Cayley–Deza graphs of diameter 2 having less than 60 vertices.
Keywords: Deza graph, Cayley graph
Mots-clés : graph isomorphism, automorphism group.
@article{SEMR_2014_11_a6,
     author = {S. V. Goryainov and L. V. Shalaginov},
     title = {Cayley--Deza graphs with fewer than 60 vertices},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {268--310},
     publisher = {mathdoc},
     volume = {11},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2014_11_a6/}
}
TY  - JOUR
AU  - S. V. Goryainov
AU  - L. V. Shalaginov
TI  - Cayley--Deza graphs with fewer than 60 vertices
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2014
SP  - 268
EP  - 310
VL  - 11
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2014_11_a6/
LA  - ru
ID  - SEMR_2014_11_a6
ER  - 
%0 Journal Article
%A S. V. Goryainov
%A L. V. Shalaginov
%T Cayley--Deza graphs with fewer than 60 vertices
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2014
%P 268-310
%V 11
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2014_11_a6/
%G ru
%F SEMR_2014_11_a6
S. V. Goryainov; L. V. Shalaginov. Cayley--Deza graphs with fewer than 60 vertices. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 11 (2014), pp. 268-310. http://geodesic.mathdoc.fr/item/SEMR_2014_11_a6/

[1] Gavrilyuk A. L., Goryainov S. V., Kabanov V. V., “O vershinnoi svyaznosti grafov Deza”, Tr. In-ta matematiki i mekhaniki UrO RAN, 19:3 (2013), 94–104 | MR

[2] Gavrilyuk A. L., Shalaginov L. V., “O grafakh Deza s 4-mya razlichnymi sobstvennymi znacheniyami”, Tezisy Mezhdunarodnoi (43-ei Vserossiiskoi) molodezhnoi shkoly-konferentsii (Ekaterinburg, 2012), 20–23

[3] Bridges W. G., Mena R. A., “Rational circulants with rational spectra and cyclic strongly regular graphs”, Ars Combin., 8 (1979), 143–161 | MR | Zbl

[4] Ma S. L., “Partial difference sets”, Discrete Math., 52 (1984), 75–89 | DOI | MR | Zbl

[5] Miklavic S., Potocnik P., “Distance-regular circulants”, European Journal of Combinatorics, 24 (2003), 777–784 | DOI | MR | Zbl

[6] Miklavic S., Potocnik P., “Distance-regular Cayley Graphs on Dihedral Groups”, Journal of Combinatorial theory, 97:1 (2007), 14–33 | DOI | MR | Zbl

[7] Muzychuk M., “A solution of the isomorphism problem for circulant graphs”, Proc. London Math. Soc., 88:3 (2004), 1–41 | DOI | MR | Zbl

[8] Beineke L. W., Wilson R. J., Cameron P. J., Topics in algebraic graph theory, Cambridge University Press, 2004, 276 pp. | MR | Zbl

[9] Erickson M., Fernando S., Haemers W. H., Hardy D., Hemmeter J., “Deza graphs: a generalization of strongly regular graphs”, J. Comb. Designs, 7 (1999), 359–405 | 3.0.CO;2-U class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI | MR