Construction of initial approximation and method of computing optimal control
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 11 (2014), pp. 87-118.

Voir la notice de l'article provenant de la source Math-Net.Ru

A method of reducing computational cost in the course of the control is considered. It is based on subdividing the whole computational process into the computations performed beforehand and those that are carried on while the control takes place. A method of calculation of initial approximation is proposed. Used here are the quasi-optimal control and subdividing of the range of initial conditions into the attainability domains. The ways for finding the support hyperplane and for computing approximate values of the switching times and the time of translating the system under the time-optimal control are given. It is developed an iterative procedure that allows the integrating to be carried out only over the displacement intervals of the switching times and that of the control completion time. It is proved that the sequence of quasi-optimal controls converges to the optimal control. The radius of the local convergence at the quadratic rate is obtained. The evaluation of computational working time of the method is given. The computational algorithm and the results of numerical calculations are presented.
Keywords: optimal control, speed, switching time, attainability domain, approximation, support hyperplane, edge points, normalized adjoint system, iterative method, initial approximation, computational cost.
Mots-clés : quasi-optimal control, variation
@article{SEMR_2014_11_a59,
     author = {V. M. Aleksandrov},
     title = {Construction of initial approximation and method of computing optimal control},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {87--118},
     publisher = {mathdoc},
     volume = {11},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2014_11_a59/}
}
TY  - JOUR
AU  - V. M. Aleksandrov
TI  - Construction of initial approximation and method of computing optimal control
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2014
SP  - 87
EP  - 118
VL  - 11
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2014_11_a59/
LA  - ru
ID  - SEMR_2014_11_a59
ER  - 
%0 Journal Article
%A V. M. Aleksandrov
%T Construction of initial approximation and method of computing optimal control
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2014
%P 87-118
%V 11
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2014_11_a59/
%G ru
%F SEMR_2014_11_a59
V. M. Aleksandrov. Construction of initial approximation and method of computing optimal control. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 11 (2014), pp. 87-118. http://geodesic.mathdoc.fr/item/SEMR_2014_11_a59/

[1] L. S. Pontryagin, V. G. Boltyanskii, R. V. Gamkrelidze, E. F. Mischenko, Matematicheskaya teoriya optimalnykh protsessov, Nauka, M., 1976

[2] V. G. Boltyanskii, Matematicheskie metody optimalnogo upravleniya, Nauka, M., 1969 | MR

[3] R. P. Fedorenko, Priblizhennoe reshenie zadach optimalnogo upravleniya, Nauka, M., 1978 | MR

[4] A. A. Lyubushin, “O primenenii modifikatsii metoda posledovatelnykh priblizhenii dlya resheniya zadach optimalnogo upravleniya”, Zh. vychisl. matem. i matem. fiz., 22:1 (1982), 30–35 | MR | Zbl

[5] N. I. Grachev, Yu. G. Evtushenko, “Biblioteka programm dlya resheniya zadach optimalnogo upravleniya”, Zh. vychisl. matem. i matem. fiz., 19:2 (1979), 367–387 | MR | Zbl

[6] Yu. N. Kiselev, “Bystroskhodyaschiesya algoritmy dlya lineinogo optimalnogo bystrodeistviya”, Kibernetika, 62:6 (1990), 47–57 | MR | Zbl

[7] V. A. Srochko, Iteratsionnye metody resheniya zadach optimalnogo upravleniya, Fizmatlit, M., 2000

[8] R. E. Hartl, S. P. Sethi, R. G. Vickson, “A survey of the maximum principle for optimal control problems with state constraints”, SIAM Review, 37 (1995), 181–218 | DOI | MR | Zbl

[9] Yu. S. Osipov, “Pakety programm: podkhod k resheniyu zadach pozitsionnogo upravleniya s nepolnoi informatsiei”, Uspekhi matematicheskikh nauk, 61:4 (2006), 25–76 | DOI | MR | Zbl

[10] R. Gabasov, F. M. Kirillova, A. I. Tyatyushkin, Konstruktivnye metody optimizatsii, v. 1, Lineinye zadachi, Universitetskoe, Minsk, 1984 | MR

[11] N. V. Balashevich, R. Gabasov, F. M. Kirillova, “Chislennye metody programmnoi i pozitsionnoi optimizatsii lineinykh sistem upravleniya”, Zh. vychisl. matem. i matem. fiz., 40:6 (2000), 838–859 | MR | Zbl

[12] R. Gabasov, F. M. Kirillova, “Optimalnoe upravlenie i nablyudenie v realnom vremeni”, Izv. RAN. Teoriya i sistemy upravleniya, 2006, no. 3, 90–111 | MR

[13] V. M. Aleksandrov, “Approksimatsiya mnozhestv dostizhimosti i vychislenie optimalnogo po bystrodeistviyu upravleniya v realnom vremeni”, Sibirskie Elektronnye Matematicheskie Izvestiya, 8 (2011), 72–104 | MR | Zbl

[14] V. M. Aleksandrov, “Vychislenie optimalnogo upravleniya v realnom vremeni”, Zh. vychisl. matem. i matem. fiz., 52:10 (2012), 1778–1800 | MR | Zbl

[15] V. M. Aleksandrov, “Postroenie approksimiruyuschei konstruktsii dlya vychisleniya i realizatsii optimalnogo upravleniya v realnom vremeni”, Sibirskii zhurnal vychislitelnoi matematiki, 15:1 (2012), 1–19

[16] F. L. Chernousko, “Ellipsoidalnye otsenki oblasti dostizhimosti upravlyaemoi sistemy”, Prikladnaya matematika i mekhanika, 45:1 (1981), 11–19 | MR

[17] A. I. Ovseevich, F. L. Chernousko, “Nekotorye svoistva optimalnykh ellipsoidov, approksimiruyuschikh mnozhestva dostizhimosti”, DAN, 388:4 (2003), 462–465 | MR | Zbl

[18] A. I. Ovseevich, Yu. V. Tarabanko, “Yavnye formuly dlya ellipsodov, approksimiruyuschikh oblasti dostizhimosti”, Izv. RAN. Teoriya i sistemy upravleniya, 2007, no. 2, 33–44 | MR

[19] M. M. Khrustalev, “Tochnoe opisanie mnozhestv dostizhimosti i uslovie globalnoi optimalnosti dinamicheskikh sistem. I: Otsenki i tochnoe opisanie mnozhestv dostizhimosti i upravlyaemosti”, Avtomatika i telemekhanika, 1988, no. 5, 62–71 | MR

[20] V. I. Gurman, E. A. Trushkova, “Otsenki mnozhestv dostizhimosti upravlyaemykh sistem”, Differentsialnye uravneniya, 45:11 (2009), 1601–1609 | MR | Zbl

[21] B. T. Polyak, P. S. Scherbakov, “Mnozhestva dostizhimosti i prityazheniya lineinykh sistem s ogranichennym upravleniem: opisanie s pomoschyu invariantnykh ellipsoidov”, Stokhasticheskaya optimizatsiya v informatike, 4:1 (2008), 3–24

[22] Yu. I. Berdyshev, “O postroenii oblasti dostizhimosti v odnoi nelineinoi zadache”, Izv. RAN. Teoriya i sistemy upravleniya, 2006, no. 4, 22–26 | MR

[23] G. Raisig, “Vypuklost mnozhestv dostizhimosti sistem upravleniya”, Avtomatika i telemekhanika, 2007, no. 9, 64–78 | MR

[24] N. B. Brusnikina, A. V. Lotov, “Approksimatsiya s garantirovannoi tochnostyu mnozhestv dostizhimosti dlya lineinoi dinamicheskoi sistemy, podverzhennoi impulsnym vozdeistviyam”, Zh. vychisl. matem. i matem. fiz., 47:11 (2007), 1855–1864 | MR

[25] V. M. Aleksandrov, “Priblizhennoe reshenie zadachi lineinogo bystrodeistviya”, Avtomatika i telemekhanika, 1998, no. 12, 3–13 | MR

[26] V. M. Aleksandrov, “Posledovatelnyi sintez optimalnogo po bystrodeistviyu upravleniya v realnom vremeni”, Avtomatika i telemekhanika, 2008, no. 8, 3–24 | MR

[27] V. M. Aleksandrov, “Chislennyi metod resheniya zadachi lineinogo bystrodeistviya”, Zh. vychisl. matem. i matem. fiz., 38:6 (1998), 918–931 | MR | Zbl

[28] F. R. Gantmakher, Teoriya matrits, Nauka, M., 1966 | MR