Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SEMR_2014_11_a58, author = {S. A. Sazhenkov and E. V. Sazhenkova and A. V. Zubkova}, title = {Small perturbations of two-phase fluid in pores: effective macroscopic monophasic viscoelastic behavior}, journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a}, pages = {26--51}, publisher = {mathdoc}, volume = {11}, year = {2014}, language = {en}, url = {http://geodesic.mathdoc.fr/item/SEMR_2014_11_a58/} }
TY - JOUR AU - S. A. Sazhenkov AU - E. V. Sazhenkova AU - A. V. Zubkova TI - Small perturbations of two-phase fluid in pores: effective macroscopic monophasic viscoelastic behavior JO - Sibirskie èlektronnye matematičeskie izvestiâ PY - 2014 SP - 26 EP - 51 VL - 11 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SEMR_2014_11_a58/ LA - en ID - SEMR_2014_11_a58 ER -
%0 Journal Article %A S. A. Sazhenkov %A E. V. Sazhenkova %A A. V. Zubkova %T Small perturbations of two-phase fluid in pores: effective macroscopic monophasic viscoelastic behavior %J Sibirskie èlektronnye matematičeskie izvestiâ %D 2014 %P 26-51 %V 11 %I mathdoc %U http://geodesic.mathdoc.fr/item/SEMR_2014_11_a58/ %G en %F SEMR_2014_11_a58
S. A. Sazhenkov; E. V. Sazhenkova; A. V. Zubkova. Small perturbations of two-phase fluid in pores: effective macroscopic monophasic viscoelastic behavior. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 11 (2014), pp. 26-51. http://geodesic.mathdoc.fr/item/SEMR_2014_11_a58/
[1] R. I. Nigmatulin, Dynamics of Multiphase Systems, v. 1, Hemisphere, Washington, 1990
[2] R. A. Rakhmatulin, “Foundations of gas dynamics of self-penetrative motions of continuous media”, PMM, 20:2 (1956) (In Russian)
[3] S. A. Sazhenkov, E V. Sazhenkova, “Small perturbations of two-phase thermofluid in pores: linearization procedure and equations of isothermal microstructure”, Siberian Electronic Mathematical Reports, 8 (2011), 127–158 | MR
[4] M. Massoud, Engineering Thermofluids. Thermodynamics, Fluid Mechanics, and Heat Transfer, Springer, Berlin, 2005
[5] P. Germain, Course of Mechanics of Continuous Media, v. 1, Vysshaia Shkola, M., 1983; Cours de Mécanique des Milieux Continus, v. 1, Théorie générale, Masson et Cie, Paris, 1973 (in French) | Zbl
[6] G. Nguetseng, “A general convergence result for a functional related to the theory of homogenization”, SIAM J. Math. Anal., 20 (1989), 608–623 | DOI | MR | Zbl
[7] G. Allaire, “Homogenization and two-scale convergence”, SIAM J. Math. Anal., 23 (1992), 1482–1518 | DOI | MR | Zbl
[8] S. A. Sazhenkov, “Effective thermoviscoelasticity of a saturated porous ground”, Vestnik, Quart. J. of Novosibirsk State Univ., Series: Math. mech. and informatics, 8:2 (2008), 105–129 | MR | Zbl
[9] E. Sanchez-Palencia, Non-homogeneous media and vibration theory, Lecture Notes in Physics, 129, Springer, Berlin, 1980 | MR
[10] R. Burridge, J. B. Keller, “Poroelasticity equations derived from microstructure”, J. Acoust. Amer. Soc., 70 (1981), 1140–1146 | DOI | Zbl
[11] N. S. Bakhvalov, G. Panasenko, Homogenisation: Averaging processes in periodic media: mathematical problems in the mechanics of composite materials, Springer, New York, 1989 | MR
[12] R. P. Gilbert, A. Mikelić, “Homogenizing the acoustic properties of the seabed, I”, Nonlinear Anal., 40 (2000), 185–212 | DOI | MR | Zbl
[13] A. M. Meirmanov, “Nguetseng's two-scale convergence method for filtration and seismic acoustic problems in elastic porous media”, Siberian Mathematical Journal, 48:3, 519–538 | DOI | MR
[14] Coussy O., Poromechanics, John Wiley Sons, Chichester, 2004
[15] T. Clopeau, J. L. Ferrin, R. P. Gilbert, A. Mikelić, “Homogenizing the acoustic properties of the seabed, II”, Math. Comp. Modelling, 33 (2001), 821–841 | DOI | MR | Zbl
[16] O. A. Ladyzhenskaya, N. N. Ural'tseva, Linear and Quasilinear Elliptic Equations, Academic Press, New York, 1968 | MR | Zbl
[17] V. V. Jikov, S. M. Kozlov, O. A. Oleinik, Homogenization of differential operators and integral functionals, Springer, New York, 1994 | MR