Small perturbations of two-phase fluid in pores: effective macroscopic monophasic viscoelastic behavior
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 11 (2014), pp. 26-51.

Voir la notice de l'article provenant de la source Math-Net.Ru

The linearized model of joint motion of an elastic porous body and a two-phase viscous compressible liquid in pores is considered. The reciprocal deformation of liquid phases is governed by Rakhmatullin’s scheme. It is assumed that the porous body has a periodic geometry and that the ratio of the pattern periodic cell and the diameter of the entire mechanical system is a small parameter in the model. The homogenization procedure, i.e. a limiting passage as the small parameter tends to zero, is fulfilled. As the result, we find that the limiting distributions of displacements of the media serve as a solution of a well-posed initial-boundary value problem for the model of linear monophasic viscoelastic material with memory of shape. Moreover, coefficients of this newly constructed model arise from microstructure, more precisely, they are uniquely defined by data in the original model. Homogenization procedure is based on the method of two-scale convergence and is mathematically rigorously justified.
Keywords: two-phase fluid in pores, homogenization of periodic structure, two-scale convergence, viscoelastic body.
@article{SEMR_2014_11_a58,
     author = {S. A. Sazhenkov and E. V. Sazhenkova and A. V. Zubkova},
     title = {Small perturbations of two-phase fluid in pores: effective macroscopic monophasic viscoelastic behavior},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {26--51},
     publisher = {mathdoc},
     volume = {11},
     year = {2014},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2014_11_a58/}
}
TY  - JOUR
AU  - S. A. Sazhenkov
AU  - E. V. Sazhenkova
AU  - A. V. Zubkova
TI  - Small perturbations of two-phase fluid in pores: effective macroscopic monophasic viscoelastic behavior
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2014
SP  - 26
EP  - 51
VL  - 11
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2014_11_a58/
LA  - en
ID  - SEMR_2014_11_a58
ER  - 
%0 Journal Article
%A S. A. Sazhenkov
%A E. V. Sazhenkova
%A A. V. Zubkova
%T Small perturbations of two-phase fluid in pores: effective macroscopic monophasic viscoelastic behavior
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2014
%P 26-51
%V 11
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2014_11_a58/
%G en
%F SEMR_2014_11_a58
S. A. Sazhenkov; E. V. Sazhenkova; A. V. Zubkova. Small perturbations of two-phase fluid in pores: effective macroscopic monophasic viscoelastic behavior. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 11 (2014), pp. 26-51. http://geodesic.mathdoc.fr/item/SEMR_2014_11_a58/

[1] R. I. Nigmatulin, Dynamics of Multiphase Systems, v. 1, Hemisphere, Washington, 1990

[2] R. A. Rakhmatulin, “Foundations of gas dynamics of self-penetrative motions of continuous media”, PMM, 20:2 (1956) (In Russian)

[3] S. A. Sazhenkov, E V. Sazhenkova, “Small perturbations of two-phase thermofluid in pores: linearization procedure and equations of isothermal microstructure”, Siberian Electronic Mathematical Reports, 8 (2011), 127–158 | MR

[4] M. Massoud, Engineering Thermofluids. Thermodynamics, Fluid Mechanics, and Heat Transfer, Springer, Berlin, 2005

[5] P. Germain, Course of Mechanics of Continuous Media, v. 1, Vysshaia Shkola, M., 1983; Cours de Mécanique des Milieux Continus, v. 1, Théorie générale, Masson et Cie, Paris, 1973 (in French) | Zbl

[6] G. Nguetseng, “A general convergence result for a functional related to the theory of homogenization”, SIAM J. Math. Anal., 20 (1989), 608–623 | DOI | MR | Zbl

[7] G. Allaire, “Homogenization and two-scale convergence”, SIAM J. Math. Anal., 23 (1992), 1482–1518 | DOI | MR | Zbl

[8] S. A. Sazhenkov, “Effective thermoviscoelasticity of a saturated porous ground”, Vestnik, Quart. J. of Novosibirsk State Univ., Series: Math. mech. and informatics, 8:2 (2008), 105–129 | MR | Zbl

[9] E. Sanchez-Palencia, Non-homogeneous media and vibration theory, Lecture Notes in Physics, 129, Springer, Berlin, 1980 | MR

[10] R. Burridge, J. B. Keller, “Poroelasticity equations derived from microstructure”, J. Acoust. Amer. Soc., 70 (1981), 1140–1146 | DOI | Zbl

[11] N. S. Bakhvalov, G. Panasenko, Homogenisation: Averaging processes in periodic media: mathematical problems in the mechanics of composite materials, Springer, New York, 1989 | MR

[12] R. P. Gilbert, A. Mikelić, “Homogenizing the acoustic properties of the seabed, I”, Nonlinear Anal., 40 (2000), 185–212 | DOI | MR | Zbl

[13] A. M. Meirmanov, “Nguetseng's two-scale convergence method for filtration and seismic acoustic problems in elastic porous media”, Siberian Mathematical Journal, 48:3, 519–538 | DOI | MR

[14] Coussy O., Poromechanics, John Wiley Sons, Chichester, 2004

[15] T. Clopeau, J. L. Ferrin, R. P. Gilbert, A. Mikelić, “Homogenizing the acoustic properties of the seabed, II”, Math. Comp. Modelling, 33 (2001), 821–841 | DOI | MR | Zbl

[16] O. A. Ladyzhenskaya, N. N. Ural'tseva, Linear and Quasilinear Elliptic Equations, Academic Press, New York, 1968 | MR | Zbl

[17] V. V. Jikov, S. M. Kozlov, O. A. Oleinik, Homogenization of differential operators and integral functionals, Springer, New York, 1994 | MR