On switching nonseparable graphs with switching separable subgraphs
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 11 (2014), pp. 988-998.

Voir la notice de l'article provenant de la source Math-Net.Ru

A graph of order $n \ge 4$ is called switching separable if its modulo-$2$ sum with some complete bipartite graph on the same set of vertices is divided into two mutually independent subgraphs, each having at least two vertices. We describe all switching nonseparable graphs of order $n$ whose induced subgraphs of order $(n-1)$ are all switching separable. In particular, such graphs exist only if $n$ is odd. This leads to the following essential refinement of the known test on switching separability, in terms of subgraphs: if all order-$(n-1)$ subgraphs of a graph of order $n$ are separable, then either the graph itself is separable, or $n$ is odd and the graph belongs to the two described switching classes.
Keywords: Two-graph, switching of graph, switching separability, Seidel switching, $n$-ary quasigroup.
@article{SEMR_2014_11_a57,
     author = {E. A. Bespalov},
     title = {On switching nonseparable graphs with switching separable subgraphs},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {988--998},
     publisher = {mathdoc},
     volume = {11},
     year = {2014},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2014_11_a57/}
}
TY  - JOUR
AU  - E. A. Bespalov
TI  - On switching nonseparable graphs with switching separable subgraphs
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2014
SP  - 988
EP  - 998
VL  - 11
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2014_11_a57/
LA  - en
ID  - SEMR_2014_11_a57
ER  - 
%0 Journal Article
%A E. A. Bespalov
%T On switching nonseparable graphs with switching separable subgraphs
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2014
%P 988-998
%V 11
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2014_11_a57/
%G en
%F SEMR_2014_11_a57
E. A. Bespalov. On switching nonseparable graphs with switching separable subgraphs. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 11 (2014), pp. 988-998. http://geodesic.mathdoc.fr/item/SEMR_2014_11_a57/

[1] V. D. Belousov, $n$-Ary Quasigroups, Shtiintsa, Kishinev, 1953 (In Russian)

[2] D. S. Krotov, “On irreducible $n$-ary quasigroups with reducible retracts”, Eur. J. Comb., 29:2 (2008), 507–513 | DOI | MR | Zbl

[3] D. S. Krotov, “On reduciblity of $n$-ary quasigroups”, Discrete Math., 308:22 (2008), 5289–5297 | DOI | MR | Zbl

[4] D. S. Krotov, “On connection between the switching separability of a graph and its subgraphs”, Diskretn. Anal. Issled. Oper., 17:2 (2010), 46–56 | MR | Zbl

[5] D. S. Krotov, V. N. Potapov, “$n$-Ary quasigroups of order 4”, SIAM J. Discrete Math., 23:2 (2009), 561–570 | DOI | MR | Zbl

[6] D. S. Krotov, V. N. Potapov, “On connection between reducibility of an $n$-ary qusigroup and that of its retracts”, Discrete Math., 311 (2011), 58–66 | DOI | MR | Zbl

[7] B. D. McKay, I. M. Wanless, “A census of small Latin hypercubes”, SIAM J. Discrete Math., 22:2 (2008), 719–736 | DOI | MR | Zbl

[8] E. Spence, “Two-graphs”, CRC Handbook of Combinatorial Designs, eds. C. J. Colbourn, J. H. Dinitz, CRC Press, Boca Raton, FL, 1996, 686–694 | MR | Zbl

[9] J. H. van Lint, J. J. Seidel, “Equilateral point sets in elliptic geometry”, Nederl. Akad. Wet., Proc., Ser. A, Indag. Math., 69 (1996), 335–348 | MR