Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SEMR_2014_11_a57, author = {E. A. Bespalov}, title = {On switching nonseparable graphs with switching separable subgraphs}, journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a}, pages = {988--998}, publisher = {mathdoc}, volume = {11}, year = {2014}, language = {en}, url = {http://geodesic.mathdoc.fr/item/SEMR_2014_11_a57/} }
E. A. Bespalov. On switching nonseparable graphs with switching separable subgraphs. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 11 (2014), pp. 988-998. http://geodesic.mathdoc.fr/item/SEMR_2014_11_a57/
[1] V. D. Belousov, $n$-Ary Quasigroups, Shtiintsa, Kishinev, 1953 (In Russian)
[2] D. S. Krotov, “On irreducible $n$-ary quasigroups with reducible retracts”, Eur. J. Comb., 29:2 (2008), 507–513 | DOI | MR | Zbl
[3] D. S. Krotov, “On reduciblity of $n$-ary quasigroups”, Discrete Math., 308:22 (2008), 5289–5297 | DOI | MR | Zbl
[4] D. S. Krotov, “On connection between the switching separability of a graph and its subgraphs”, Diskretn. Anal. Issled. Oper., 17:2 (2010), 46–56 | MR | Zbl
[5] D. S. Krotov, V. N. Potapov, “$n$-Ary quasigroups of order 4”, SIAM J. Discrete Math., 23:2 (2009), 561–570 | DOI | MR | Zbl
[6] D. S. Krotov, V. N. Potapov, “On connection between reducibility of an $n$-ary qusigroup and that of its retracts”, Discrete Math., 311 (2011), 58–66 | DOI | MR | Zbl
[7] B. D. McKay, I. M. Wanless, “A census of small Latin hypercubes”, SIAM J. Discrete Math., 22:2 (2008), 719–736 | DOI | MR | Zbl
[8] E. Spence, “Two-graphs”, CRC Handbook of Combinatorial Designs, eds. C. J. Colbourn, J. H. Dinitz, CRC Press, Boca Raton, FL, 1996, 686–694 | MR | Zbl
[9] J. H. van Lint, J. J. Seidel, “Equilateral point sets in elliptic geometry”, Nederl. Akad. Wet., Proc., Ser. A, Indag. Math., 69 (1996), 335–348 | MR