Upper bounds on the permanent of multidimensional $(0,1)$-matrices
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 11 (2014), pp. 958-965
Voir la notice de l'article provenant de la source Math-Net.Ru
The permanent of a multidimensional matrix is the sum of products of entries over all diagonals.
By Minc's conjecture, there exists a reachable upper bound on the permanent of $2$-dimensional $(0,1)$-matrices. In this paper we obtain some generalizations of Minc's conjecture to the multidimensional case. For this purpose we prove and compare several bounds on the permanent of multidimensional $(0,1)$-matrices.
Most estimates can be used for matrices with nonnegative bounded entries.
Mots-clés :
permanent, multidimensional matrix, $(0,1)$-matrix.
@article{SEMR_2014_11_a56,
author = {A. A. Taranenko},
title = {Upper bounds on the permanent of multidimensional $(0,1)$-matrices},
journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
pages = {958--965},
publisher = {mathdoc},
volume = {11},
year = {2014},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SEMR_2014_11_a56/}
}
A. A. Taranenko. Upper bounds on the permanent of multidimensional $(0,1)$-matrices. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 11 (2014), pp. 958-965. http://geodesic.mathdoc.fr/item/SEMR_2014_11_a56/