Upper bounds on the permanent of multidimensional $(0,1)$-matrices
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 11 (2014), pp. 958-965.

Voir la notice de l'article provenant de la source Math-Net.Ru

The permanent of a multidimensional matrix is the sum of products of entries over all diagonals. By Minc's conjecture, there exists a reachable upper bound on the permanent of $2$-dimensional $(0,1)$-matrices. In this paper we obtain some generalizations of Minc's conjecture to the multidimensional case. For this purpose we prove and compare several bounds on the permanent of multidimensional $(0,1)$-matrices. Most estimates can be used for matrices with nonnegative bounded entries.
Mots-clés : permanent, multidimensional matrix, $(0,1)$-matrix.
@article{SEMR_2014_11_a56,
     author = {A. A. Taranenko},
     title = {Upper bounds on the permanent of multidimensional $(0,1)$-matrices},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {958--965},
     publisher = {mathdoc},
     volume = {11},
     year = {2014},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2014_11_a56/}
}
TY  - JOUR
AU  - A. A. Taranenko
TI  - Upper bounds on the permanent of multidimensional $(0,1)$-matrices
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2014
SP  - 958
EP  - 965
VL  - 11
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2014_11_a56/
LA  - en
ID  - SEMR_2014_11_a56
ER  - 
%0 Journal Article
%A A. A. Taranenko
%T Upper bounds on the permanent of multidimensional $(0,1)$-matrices
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2014
%P 958-965
%V 11
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2014_11_a56/
%G en
%F SEMR_2014_11_a56
A. A. Taranenko. Upper bounds on the permanent of multidimensional $(0,1)$-matrices. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 11 (2014), pp. 958-965. http://geodesic.mathdoc.fr/item/SEMR_2014_11_a56/

[1] L. M. Bregman, “Some properties of nonnegative matrices and their permanents”, Soviet Math Dokl., 14 (1973), 945–949 | Zbl

[2] H. Minc, Permanents, Encyclopedia of Mathematics and Its Applications, 6, Addison-Wesley Publishing Co., Reading, Mass., 1978 | MR | Zbl

[3] H. Minc, “Upper bounds for permanents of (0,1)-matrices”, Bull. Amer. Math. Soc., 69 (1963), 789–791 | DOI | MR | Zbl

[4] J. Radhakrishnan, “An entropy proof of Bregman's theorem”, Journal of combinatorial theory, Series A, 77 (1997), 161–164 | DOI | MR | Zbl

[5] A. Schrijver, “A short proof of Minc's conjecture”, Journal of combinatorial theory, Series A, 25 (1978), 80–83 | DOI | MR | Zbl

[6] A. A. Taranenko, “Multidimensional permanents and an upper bound on number of transversals in latin squares”, Journal of Combinatorial Designs | DOI