Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SEMR_2014_11_a56, author = {A. A. Taranenko}, title = {Upper bounds on the permanent of multidimensional $(0,1)$-matrices}, journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a}, pages = {958--965}, publisher = {mathdoc}, volume = {11}, year = {2014}, language = {en}, url = {http://geodesic.mathdoc.fr/item/SEMR_2014_11_a56/} }
A. A. Taranenko. Upper bounds on the permanent of multidimensional $(0,1)$-matrices. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 11 (2014), pp. 958-965. http://geodesic.mathdoc.fr/item/SEMR_2014_11_a56/
[1] L. M. Bregman, “Some properties of nonnegative matrices and their permanents”, Soviet Math Dokl., 14 (1973), 945–949 | Zbl
[2] H. Minc, Permanents, Encyclopedia of Mathematics and Its Applications, 6, Addison-Wesley Publishing Co., Reading, Mass., 1978 | MR | Zbl
[3] H. Minc, “Upper bounds for permanents of (0,1)-matrices”, Bull. Amer. Math. Soc., 69 (1963), 789–791 | DOI | MR | Zbl
[4] J. Radhakrishnan, “An entropy proof of Bregman's theorem”, Journal of combinatorial theory, Series A, 77 (1997), 161–164 | DOI | MR | Zbl
[5] A. Schrijver, “A short proof of Minc's conjecture”, Journal of combinatorial theory, Series A, 25 (1978), 80–83 | DOI | MR | Zbl
[6] A. A. Taranenko, “Multidimensional permanents and an upper bound on number of transversals in latin squares”, Journal of Combinatorial Designs | DOI