Small cycles in the star graph
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 11 (2014), pp. 906-914

Voir la notice de l'article provenant de la source Math-Net.Ru

The Star graph is the Cayley graph on the symmetric group $Sym_n$ generated by the set of transpositions $\{(1 2),(1 3),\ldots,(1 n)\}$. These graphs are bipartite, they do not contain odd cycles but contain all even cycles with a sole exception $4$-cycles. We characterize all distinct $6$- and $8$-cycles by their canonical forms as products of generating elements. The number of these cycles in the Star graph is also given.
Keywords: Cayley graphs; Star graph; cycle embedding; product of generating elements.
@article{SEMR_2014_11_a55,
     author = {Elena V. Konstantinova and Alexey N. Medvedev},
     title = {Small cycles in the star graph},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {906--914},
     publisher = {mathdoc},
     volume = {11},
     year = {2014},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2014_11_a55/}
}
TY  - JOUR
AU  - Elena V. Konstantinova
AU  - Alexey N. Medvedev
TI  - Small cycles in the star graph
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2014
SP  - 906
EP  - 914
VL  - 11
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2014_11_a55/
LA  - en
ID  - SEMR_2014_11_a55
ER  - 
%0 Journal Article
%A Elena V. Konstantinova
%A Alexey N. Medvedev
%T Small cycles in the star graph
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2014
%P 906-914
%V 11
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2014_11_a55/
%G en
%F SEMR_2014_11_a55
Elena V. Konstantinova; Alexey N. Medvedev. Small cycles in the star graph. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 11 (2014), pp. 906-914. http://geodesic.mathdoc.fr/item/SEMR_2014_11_a55/