On decomposition of a Boolean function into sum of bent functions
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 11 (2014), pp. 745-751

Voir la notice de l'article provenant de la source Math-Net.Ru

It is proved that every Boolean function in $n$ variables of a constant degree $d$, where $d\leq n/2$, $n$ is even, can be represented as the sum of constant number of bent functions in $n$ variables. It is shown that any cubic Boolean function in $8$ variables is the sum of not more than $4$ bent functions in $8$ variables.
Keywords: Boolean function; bent function; affine classification; bent decomposition.
@article{SEMR_2014_11_a52,
     author = {N. N. Tokareva},
     title = {On decomposition of a {Boolean} function into sum of bent functions},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {745--751},
     publisher = {mathdoc},
     volume = {11},
     year = {2014},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2014_11_a52/}
}
TY  - JOUR
AU  - N. N. Tokareva
TI  - On decomposition of a Boolean function into sum of bent functions
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2014
SP  - 745
EP  - 751
VL  - 11
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2014_11_a52/
LA  - en
ID  - SEMR_2014_11_a52
ER  - 
%0 Journal Article
%A N. N. Tokareva
%T On decomposition of a Boolean function into sum of bent functions
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2014
%P 745-751
%V 11
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2014_11_a52/
%G en
%F SEMR_2014_11_a52
N. N. Tokareva. On decomposition of a Boolean function into sum of bent functions. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 11 (2014), pp. 745-751. http://geodesic.mathdoc.fr/item/SEMR_2014_11_a52/