On decomposition of a Boolean function into sum of bent functions
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 11 (2014), pp. 745-751.

Voir la notice de l'article provenant de la source Math-Net.Ru

It is proved that every Boolean function in $n$ variables of a constant degree $d$, where $d\leq n/2$, $n$ is even, can be represented as the sum of constant number of bent functions in $n$ variables. It is shown that any cubic Boolean function in $8$ variables is the sum of not more than $4$ bent functions in $8$ variables.
Keywords: Boolean function; bent function; affine classification; bent decomposition.
@article{SEMR_2014_11_a52,
     author = {N. N. Tokareva},
     title = {On decomposition of a {Boolean} function into sum of bent functions},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {745--751},
     publisher = {mathdoc},
     volume = {11},
     year = {2014},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2014_11_a52/}
}
TY  - JOUR
AU  - N. N. Tokareva
TI  - On decomposition of a Boolean function into sum of bent functions
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2014
SP  - 745
EP  - 751
VL  - 11
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2014_11_a52/
LA  - en
ID  - SEMR_2014_11_a52
ER  - 
%0 Journal Article
%A N. N. Tokareva
%T On decomposition of a Boolean function into sum of bent functions
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2014
%P 745-751
%V 11
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2014_11_a52/
%G en
%F SEMR_2014_11_a52
N. N. Tokareva. On decomposition of a Boolean function into sum of bent functions. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 11 (2014), pp. 745-751. http://geodesic.mathdoc.fr/item/SEMR_2014_11_a52/

[1] Cusick T. W., Stănică P., Cryptographic Boolean Functions and Applications, Acad. Press. Elsevier, 2009, 245 pp. | MR

[2] Hou X.-D., “Cubic bent functions”, Discrete Mathematics, 189 (1998), 149–161 | DOI | MR | Zbl

[3] Langevin P., Leander G., “Counting all bent functions in dimension eight 99270589265934370305785861242880”, Designs, Codes and Crypt., 59 (2011), 193–205 | DOI | MR | Zbl

[4] Logachev O. A., Sal'nikov A. A., Smyshlyaev S. V., Yashenko V. V., Boolean functions in coding theory and cryptology, Moscow center for the uninterrupted mathematical education, 2012, 584 pp.

[5] McFarland R. L., “A family of difference sets in non-cyclic groups”, J. of Combin. Theory, Ser. A, 15:1 (1973), 1–10 | DOI | MR | Zbl

[6] Qu L., Li C., When a Boolean Function can be Expressed as the Sum of two Bent Functions, Cryptology ePrint Archive, https://eprint.iacr.org/2014/048.pdf

[7] Rothaus O., “On bent functions”, J. Combin. Theory. Ser. A, 20:3 (1976), 300–305 | DOI | MR | Zbl

[8] Tokareva N. N., “On the number of bent functions from iterative constructions: lower bounds and hypotheses”, Advances in Mathematics of Communications, 5:4 (2011), 609–621 | DOI | MR | Zbl

[9] Tokareva N. N., “Duality between bent functions and affine functions”, Discrete Mathematics, 312 (2012), 666–670 | DOI | MR | Zbl

[10] Tokareva N., Nonlinear Boolean functions: bent functions and their generalizations, LAMBERT Academic Publishing, Saarbrucken, Germany, 2011, 180 pp.