On decomposition of a Boolean function into sum of bent functions
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 11 (2014), pp. 745-751
Voir la notice de l'article provenant de la source Math-Net.Ru
It is proved that every Boolean function in $n$ variables of a constant degree $d$, where $d\leq n/2$, $n$ is even, can be represented as the sum of constant number of bent functions in $n$ variables. It is shown that any cubic Boolean function in $8$ variables is the sum of not more than $4$ bent functions in $8$ variables.
Keywords:
Boolean function; bent function; affine classification; bent decomposition.
@article{SEMR_2014_11_a52,
author = {N. N. Tokareva},
title = {On decomposition of a {Boolean} function into sum of bent functions},
journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
pages = {745--751},
publisher = {mathdoc},
volume = {11},
year = {2014},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SEMR_2014_11_a52/}
}
N. N. Tokareva. On decomposition of a Boolean function into sum of bent functions. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 11 (2014), pp. 745-751. http://geodesic.mathdoc.fr/item/SEMR_2014_11_a52/