The weight of edge in 3-polytopes
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 11 (2014), pp. 457-463.

Voir la notice de l'article provenant de la source Math-Net.Ru

The height of an edge in 3-polytopes is the maximum degree of its incident vertices and faces. In 1940, Lebesgue proved that each 3-polytope without pyramidal edges has an edge of height at most 11. This upper bound was lowered to 10 by Avgustinovich and Borodin (1995). The best known lower bound for the height of edges is 7. We lower upper bound to 9 and give a construction of 3-polytope which has no edges of height smaller than 8.
Keywords: planar map, planar graph, 3-polytope, structural properties, height.
@article{SEMR_2014_11_a51,
     author = {O. V. Borodin and A. O. Ivanova},
     title = {The weight of edge in 3-polytopes},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {457--463},
     publisher = {mathdoc},
     volume = {11},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2014_11_a51/}
}
TY  - JOUR
AU  - O. V. Borodin
AU  - A. O. Ivanova
TI  - The weight of edge in 3-polytopes
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2014
SP  - 457
EP  - 463
VL  - 11
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2014_11_a51/
LA  - ru
ID  - SEMR_2014_11_a51
ER  - 
%0 Journal Article
%A O. V. Borodin
%A A. O. Ivanova
%T The weight of edge in 3-polytopes
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2014
%P 457-463
%V 11
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2014_11_a51/
%G ru
%F SEMR_2014_11_a51
O. V. Borodin; A. O. Ivanova. The weight of edge in 3-polytopes. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 11 (2014), pp. 457-463. http://geodesic.mathdoc.fr/item/SEMR_2014_11_a51/

[1] S. V. Avgustinovich, O. V. Borodin, “Okrestnosti reber v normalnykh kartakh”, Diskretnyi analiz i issledovanie operatsii, 2:2–3 (1995), 3–9 | MR

[2] H. Lebesgue, “Quelques conséquences simples de la formule d'Euler”, J. Math. Pures Appl., 19 (1940), 27–43 | MR

[3] E. Steinitz, “Polyheder und Raumeinteilungen”, Enzykl. math. Wiss. (Geometrie), 3AB, no. 12, 1922, 1–139