On the multidimensional permanent and $q$-ary designs
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 11 (2014), pp. 451-456.

Voir la notice de l'article provenant de la source Math-Net.Ru

An $H(n,q,w,t)$ design is a collection of some $(n-w)$-faces of the hypercube $Q^n_q$ that perfectly pierce all $(n-t)$-faces $(n\geq w>t)$. An $A(n,q,w,t)$ design is a collection of some $(n-t)$-faces of $Q^n_q$ that perfectly cover all $(n-w)$-faces. The numbers of H-designs and A-designs are expressed in terms of the multidimensional permanent. Several constructions of H-designs and A-designs are given and the existence of $H(2^{t+1},s2^t,2^{t+1}-1,2^{t+1}-2)$ designs is proven for all $s,t\geq 1$.
Keywords: Steiner system, H-design, perfect matching, clique matching
Mots-clés : MDS code, permanent.
@article{SEMR_2014_11_a50,
     author = {V. N. Potapov},
     title = {On the multidimensional permanent and $q$-ary designs},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {451--456},
     publisher = {mathdoc},
     volume = {11},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2014_11_a50/}
}
TY  - JOUR
AU  - V. N. Potapov
TI  - On the multidimensional permanent and $q$-ary designs
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2014
SP  - 451
EP  - 456
VL  - 11
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2014_11_a50/
LA  - ru
ID  - SEMR_2014_11_a50
ER  - 
%0 Journal Article
%A V. N. Potapov
%T On the multidimensional permanent and $q$-ary designs
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2014
%P 451-456
%V 11
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2014_11_a50/
%G ru
%F SEMR_2014_11_a50
V. N. Potapov. On the multidimensional permanent and $q$-ary designs. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 11 (2014), pp. 451-456. http://geodesic.mathdoc.fr/item/SEMR_2014_11_a50/

[1] S. V. Avgustinovich, “Multidimensional permanents in enumeration problems”, J. of Appl. Ind. Math., 4:1 (2010), 19–20 | DOI | MR

[2] S. Ball, “On sets of vectors of a finite vector space in which every subset of basis size is a basis”, J. Eur. Math. Soc., 14:3 (2012), 733–748 | DOI | MR | Zbl

[3] T. Etzion, “Optimal constant weight codes over $Z_k$ and generalized designs”, Discrete Math., 169:1–3 (1997), 55–82 | DOI | MR | Zbl

[4] P. Hamburger, R. E. Pippert, W. D. Weakley, “On a leverage problem in the hypercube”, Networks, 22 (1992), 435–439 | DOI | MR | Zbl

[5] H. Hanani, “On some tactical configurations”, Canad. J. Math., 15 (1963), 702–722 | DOI | MR | Zbl

[6] L. Ji, “An improvement on H design”, J. Combin. Des., 17:1 (2009), 25–35 | DOI | MR

[7] D. S. Krotov, “Inductive constructions of perfect ternary constant-weight codes with distance 3”, Probl. Inf. Transm., 37:1 (2001), 1–9 | DOI | MR | Zbl

[8] W. H. Mills, “On the existence of H design”, Proceedings of the Twenty-First Southeastern Conference on Combinatorics, Graph Theory, and Computing, Congr. Numer., 79, 1990, 129–141 | MR | Zbl

[9] V. N. Potapov, “Clique matchings in the $k$-ary $n$-dimensional cube”, Sib. Math. J., 52:2 (2011), 303–310 | DOI | MR | Zbl

[10] V. N. Potapov, D. S. Krotov, “On the number of $n$-ary quasigroups of finite order”, Discrete Mathematics and Applications, 21:5–6 (2011), 575–585 | MR | Zbl

[11] M. Svanström, “A class of 1-perfect ternary constant-weight codes”, Des. Codes and Cryptogr., 18:1–3 (1999), 223–229 | DOI | MR | Zbl

[12] V. A. Zinoviev, J. Rifa, “On new completely regular $q$-ary codes”, Probl. Inf. Transm., 43:2 (2007), 97–112 | DOI | MR | Zbl