On realizability of a graph as the prime graph of a finite group
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 11 (2014), pp. 246-257
Voir la notice de l'article provenant de la source Math-Net.Ru
The problem of the realizability of a graph as the prime graph (the Gruenberg–Kegel graph) of a finite group is considered. This problem is completely solved for graphs with at most five vertices.
Keywords:
finite group, prime graph (Gruenberg–Kegel graph), realizability of a graph.
@article{SEMR_2014_11_a5,
author = {A. L. Gavrilyuk and I. V. Khramtsov and A. S. Kondrat'ev and N. V. Maslova},
title = {On realizability of a graph as the prime graph of a finite group},
journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
pages = {246--257},
publisher = {mathdoc},
volume = {11},
year = {2014},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SEMR_2014_11_a5/}
}
TY - JOUR AU - A. L. Gavrilyuk AU - I. V. Khramtsov AU - A. S. Kondrat'ev AU - N. V. Maslova TI - On realizability of a graph as the prime graph of a finite group JO - Sibirskie èlektronnye matematičeskie izvestiâ PY - 2014 SP - 246 EP - 257 VL - 11 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SEMR_2014_11_a5/ LA - en ID - SEMR_2014_11_a5 ER -
%0 Journal Article %A A. L. Gavrilyuk %A I. V. Khramtsov %A A. S. Kondrat'ev %A N. V. Maslova %T On realizability of a graph as the prime graph of a finite group %J Sibirskie èlektronnye matematičeskie izvestiâ %D 2014 %P 246-257 %V 11 %I mathdoc %U http://geodesic.mathdoc.fr/item/SEMR_2014_11_a5/ %G en %F SEMR_2014_11_a5
A. L. Gavrilyuk; I. V. Khramtsov; A. S. Kondrat'ev; N. V. Maslova. On realizability of a graph as the prime graph of a finite group. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 11 (2014), pp. 246-257. http://geodesic.mathdoc.fr/item/SEMR_2014_11_a5/