Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SEMR_2014_11_a5, author = {A. L. Gavrilyuk and I. V. Khramtsov and A. S. Kondrat'ev and N. V. Maslova}, title = {On realizability of a graph as the prime graph of a finite group}, journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a}, pages = {246--257}, publisher = {mathdoc}, volume = {11}, year = {2014}, language = {en}, url = {http://geodesic.mathdoc.fr/item/SEMR_2014_11_a5/} }
TY - JOUR AU - A. L. Gavrilyuk AU - I. V. Khramtsov AU - A. S. Kondrat'ev AU - N. V. Maslova TI - On realizability of a graph as the prime graph of a finite group JO - Sibirskie èlektronnye matematičeskie izvestiâ PY - 2014 SP - 246 EP - 257 VL - 11 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SEMR_2014_11_a5/ LA - en ID - SEMR_2014_11_a5 ER -
%0 Journal Article %A A. L. Gavrilyuk %A I. V. Khramtsov %A A. S. Kondrat'ev %A N. V. Maslova %T On realizability of a graph as the prime graph of a finite group %J Sibirskie èlektronnye matematičeskie izvestiâ %D 2014 %P 246-257 %V 11 %I mathdoc %U http://geodesic.mathdoc.fr/item/SEMR_2014_11_a5/ %G en %F SEMR_2014_11_a5
A. L. Gavrilyuk; I. V. Khramtsov; A. S. Kondrat'ev; N. V. Maslova. On realizability of a graph as the prime graph of a finite group. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 11 (2014), pp. 246-257. http://geodesic.mathdoc.fr/item/SEMR_2014_11_a5/
[1] J. H. Conway, et al., Atlas of finite groups, Clarendon Press, Oxford, 1985 | MR | Zbl
[2] C. W. Curtis, I. Reiner, Representation theory of finite groups and associative algebras, AMS Chelsea Publishing, Providence, 1962 | MR
[3] S. Dolfi, E. Jabara, M. S. Lucido, “$C55$-groups”, Sib. Math. J., 45:6 (2004), 1285–1298 | DOI | MR | Zbl
[4] F. Harrary, Graph theory, Addison-Wesley, Reading, MA, 1969 | MR
[5] D. Gorenstein, R. Lyons, R. Solomon, The classification of the finite simple groups, v. 3, Math. Surv. Monogr., 40, Amer. Math. Soc., Providence, RI, 1998 | MR | Zbl
[6] C. Jansen, K. Lux, R. Parker, R. Wilson, An atlas of Brauer characters, Clarendon Press, Oxford, 1995 | MR | Zbl
[7] A. S. Kondrat'ev, “Prime graph components of finite simple groups”, Math. USSR Sb., 67 (1990), 235–247 | DOI | MR
[8] A. S. Kondrat'ev, I. V. Khramtsov, “On finite threeprimary groups”, Trudy Inst. Mat. Mekh. UrO RAN, 16:3 (2010), 150–158 (In Russian)
[9] A. S. Kondrat'ev, I. V. Khramtsov, “On finite tetraprimary groups”, Proc. Steklov Inst. Math., 279, 2012, 43–61 | DOI
[10] M. S. Lucido, “The diameter of the prime graph of a finite group”, J. Group Theory, 2 (1999), 157–172 | DOI | MR | Zbl
[11] H. P. Tong-Viet, “Groups whose prime graphs have no triangles”, J. Algebra, 378 (2013), 196–206 | DOI | MR | Zbl
[12] A. V. Vasil'ev, E. P. Vdovin, “An adjacency criterion for the prime graph of a finite simple group”, Algebra and Logic, 44:6 (2005), 381–406 | DOI | MR
[13] J. S. Williams, “Prime graph components of finite groups”, J. Algebra, 69:2 (1981), 487–513 | DOI | MR | Zbl
[14] H. Zassenhaus, “Über endliche Fastkorper”, Abhandl. math. Semin. Univ. Hamburg, 11 (1936), 187–220 | DOI | MR
[15] I. N. Zharkov, On groups whose prime graph is a chain, Bachelor work, unpublished, Novosibirsk State University, 2008 (In Russian)
[16] M. R. Zinov'eva, V. D. Mazurov, “On finite groups with disconnected prime graph”, Proc. Steklov Inst. Math., 283, 2013, 139–145 | DOI