On realizability of a graph as the prime graph of a finite group
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 11 (2014), pp. 246-257.

Voir la notice de l'article provenant de la source Math-Net.Ru

The problem of the realizability of a graph as the prime graph (the Gruenberg–Kegel graph) of a finite group is considered. This problem is completely solved for graphs with at most five vertices.
Keywords: finite group, prime graph (Gruenberg–Kegel graph), realizability of a graph.
@article{SEMR_2014_11_a5,
     author = {A. L. Gavrilyuk and I. V. Khramtsov and A. S. Kondrat'ev and N. V. Maslova},
     title = {On realizability of a graph as the prime graph of a finite group},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {246--257},
     publisher = {mathdoc},
     volume = {11},
     year = {2014},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2014_11_a5/}
}
TY  - JOUR
AU  - A. L. Gavrilyuk
AU  - I. V. Khramtsov
AU  - A. S. Kondrat'ev
AU  - N. V. Maslova
TI  - On realizability of a graph as the prime graph of a finite group
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2014
SP  - 246
EP  - 257
VL  - 11
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2014_11_a5/
LA  - en
ID  - SEMR_2014_11_a5
ER  - 
%0 Journal Article
%A A. L. Gavrilyuk
%A I. V. Khramtsov
%A A. S. Kondrat'ev
%A N. V. Maslova
%T On realizability of a graph as the prime graph of a finite group
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2014
%P 246-257
%V 11
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2014_11_a5/
%G en
%F SEMR_2014_11_a5
A. L. Gavrilyuk; I. V. Khramtsov; A. S. Kondrat'ev; N. V. Maslova. On realizability of a graph as the prime graph of a finite group. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 11 (2014), pp. 246-257. http://geodesic.mathdoc.fr/item/SEMR_2014_11_a5/

[1] J. H. Conway, et al., Atlas of finite groups, Clarendon Press, Oxford, 1985 | MR | Zbl

[2] C. W. Curtis, I. Reiner, Representation theory of finite groups and associative algebras, AMS Chelsea Publishing, Providence, 1962 | MR

[3] S. Dolfi, E. Jabara, M. S. Lucido, “$C55$-groups”, Sib. Math. J., 45:6 (2004), 1285–1298 | DOI | MR | Zbl

[4] F. Harrary, Graph theory, Addison-Wesley, Reading, MA, 1969 | MR

[5] D. Gorenstein, R. Lyons, R. Solomon, The classification of the finite simple groups, v. 3, Math. Surv. Monogr., 40, Amer. Math. Soc., Providence, RI, 1998 | MR | Zbl

[6] C. Jansen, K. Lux, R. Parker, R. Wilson, An atlas of Brauer characters, Clarendon Press, Oxford, 1995 | MR | Zbl

[7] A. S. Kondrat'ev, “Prime graph components of finite simple groups”, Math. USSR Sb., 67 (1990), 235–247 | DOI | MR

[8] A. S. Kondrat'ev, I. V. Khramtsov, “On finite threeprimary groups”, Trudy Inst. Mat. Mekh. UrO RAN, 16:3 (2010), 150–158 (In Russian)

[9] A. S. Kondrat'ev, I. V. Khramtsov, “On finite tetraprimary groups”, Proc. Steklov Inst. Math., 279, 2012, 43–61 | DOI

[10] M. S. Lucido, “The diameter of the prime graph of a finite group”, J. Group Theory, 2 (1999), 157–172 | DOI | MR | Zbl

[11] H. P. Tong-Viet, “Groups whose prime graphs have no triangles”, J. Algebra, 378 (2013), 196–206 | DOI | MR | Zbl

[12] A. V. Vasil'ev, E. P. Vdovin, “An adjacency criterion for the prime graph of a finite simple group”, Algebra and Logic, 44:6 (2005), 381–406 | DOI | MR

[13] J. S. Williams, “Prime graph components of finite groups”, J. Algebra, 69:2 (1981), 487–513 | DOI | MR | Zbl

[14] H. Zassenhaus, “Über endliche Fastkorper”, Abhandl. math. Semin. Univ. Hamburg, 11 (1936), 187–220 | DOI | MR

[15] I. N. Zharkov, On groups whose prime graph is a chain, Bachelor work, unpublished, Novosibirsk State University, 2008 (In Russian)

[16] M. R. Zinov'eva, V. D. Mazurov, “On finite groups with disconnected prime graph”, Proc. Steklov Inst. Math., 283, 2013, 139–145 | DOI