On realizability of a graph as the prime graph of a finite group
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 11 (2014), pp. 246-257

Voir la notice de l'article provenant de la source Math-Net.Ru

The problem of the realizability of a graph as the prime graph (the Gruenberg–Kegel graph) of a finite group is considered. This problem is completely solved for graphs with at most five vertices.
Keywords: finite group, prime graph (Gruenberg–Kegel graph), realizability of a graph.
@article{SEMR_2014_11_a5,
     author = {A. L. Gavrilyuk and I. V. Khramtsov and A. S. Kondrat'ev and N. V. Maslova},
     title = {On realizability of a graph as the prime graph of a finite group},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {246--257},
     publisher = {mathdoc},
     volume = {11},
     year = {2014},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2014_11_a5/}
}
TY  - JOUR
AU  - A. L. Gavrilyuk
AU  - I. V. Khramtsov
AU  - A. S. Kondrat'ev
AU  - N. V. Maslova
TI  - On realizability of a graph as the prime graph of a finite group
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2014
SP  - 246
EP  - 257
VL  - 11
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2014_11_a5/
LA  - en
ID  - SEMR_2014_11_a5
ER  - 
%0 Journal Article
%A A. L. Gavrilyuk
%A I. V. Khramtsov
%A A. S. Kondrat'ev
%A N. V. Maslova
%T On realizability of a graph as the prime graph of a finite group
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2014
%P 246-257
%V 11
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2014_11_a5/
%G en
%F SEMR_2014_11_a5
A. L. Gavrilyuk; I. V. Khramtsov; A. S. Kondrat'ev; N. V. Maslova. On realizability of a graph as the prime graph of a finite group. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 11 (2014), pp. 246-257. http://geodesic.mathdoc.fr/item/SEMR_2014_11_a5/