Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SEMR_2014_11_a49, author = {Y. V. Tarannikov}, title = {Generalized proper matrices and constructing of $m$-resilient {Boolean} functions with maximal nonlinearity for expanded range of parameters}, journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a}, pages = {229--245}, publisher = {mathdoc}, volume = {11}, year = {2014}, language = {en}, url = {http://geodesic.mathdoc.fr/item/SEMR_2014_11_a49/} }
TY - JOUR AU - Y. V. Tarannikov TI - Generalized proper matrices and constructing of $m$-resilient Boolean functions with maximal nonlinearity for expanded range of parameters JO - Sibirskie èlektronnye matematičeskie izvestiâ PY - 2014 SP - 229 EP - 245 VL - 11 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SEMR_2014_11_a49/ LA - en ID - SEMR_2014_11_a49 ER -
%0 Journal Article %A Y. V. Tarannikov %T Generalized proper matrices and constructing of $m$-resilient Boolean functions with maximal nonlinearity for expanded range of parameters %J Sibirskie èlektronnye matematičeskie izvestiâ %D 2014 %P 229-245 %V 11 %I mathdoc %U http://geodesic.mathdoc.fr/item/SEMR_2014_11_a49/ %G en %F SEMR_2014_11_a49
Y. V. Tarannikov. Generalized proper matrices and constructing of $m$-resilient Boolean functions with maximal nonlinearity for expanded range of parameters. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 11 (2014), pp. 229-245. http://geodesic.mathdoc.fr/item/SEMR_2014_11_a49/