Mots-clés : Monge–Ampère equation
@article{SEMR_2014_11_a47,
author = {Dmitry V. Egorov},
title = {On $\mathrm{Spin(7)}$ {Monge{\textendash}Amp\`ere} type equations},
journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
pages = {981--987},
year = {2014},
volume = {11},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SEMR_2014_11_a47/}
}
Dmitry V. Egorov. On $\mathrm{Spin(7)}$ Monge–Ampère type equations. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 11 (2014), pp. 981-987. http://geodesic.mathdoc.fr/item/SEMR_2014_11_a47/
[1] S.-T. Yau, “On the Ricci curvature of a compact Kähler manifold and the complex Monge–Ampère equation, I”, Communications on pure and applied mathematics, 31 (1978), 339–411 | DOI | MR | Zbl
[2] E. Calabi, “On Kähler manifolds with vanishing canonical class”, Algebraic geometry and topology, A symposium in honor of S. Lefschetz (1957), 78–89 | MR | Zbl
[3] S. Alesker, “Quaternionic Monge–Ampere equations”, The Journal of Geometric Analysis, 13 (2003), 205–238 | DOI | MR
[4] S. Alesker, M. Verbitsky, “Quaternionic Monge–Ampère equation and Calabi problem for HKT-manifolds”, Israel Journal of Mathematics, 176 (2010), 109–138 | DOI | MR | Zbl
[5] S. Alesker, “Plurisubharmonic functions on the octonionic plane and $\mathrm{Spin}(9)$-invariant valuations on convex sets”, Journal of Geometric Analysis, 18 (2012), 651–686 | DOI | MR
[6] F. R. Harvey, H. B. Lawson Jr., “An introduction to potential theory in calibrated geometry”, American Journal of Mathematics, 131 (2009), 893–944 | DOI | MR | Zbl
[7] M. Verbitsky, “Manifolds with parallel differential forms and Kähler identities for $G_2$-manifolds”, Journal of Geometry and Physics, 61 (2011), 1001–1016 | DOI | MR | Zbl
[8] H. Wu, “Manifolds of partially positive curvature”, Indiana Univ. Math. J., 36 (1987), 525–548 | DOI | MR | Zbl
[9] S. Karigiannis, Some notes on $G_2$ and $\mathrm{Spin}(7)$ geometry, 2006, arXiv: math/0608618