Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SEMR_2014_11_a46, author = {Ph. G. Korablev}, title = {Infinite series of {Kishino} type knots}, journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a}, pages = {975--980}, publisher = {mathdoc}, volume = {11}, year = {2014}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/SEMR_2014_11_a46/} }
Ph. G. Korablev. Infinite series of Kishino type knots. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 11 (2014), pp. 975-980. http://geodesic.mathdoc.fr/item/SEMR_2014_11_a46/
[1] L. H. Kauffman, “Virtual Knot Theory”, European Journal of Combinatorics, 20:7 (1999), 663–690 | DOI | MR | Zbl
[2] J. S. Carter, S. Kamada, M. Saito, “Stable equivalences of knots on surfaces and virtual knot cobordisms”, Journal of Knot Theory and Its Ramifications, 11:3 (2002), 311–322 | DOI | MR | Zbl
[3] T. Kishino, S. Satoh, “A note on classical knot polynomials”, Journal of Knot Theory and its Ramifications, 13:7 (2004), 845–856 | DOI | MR | Zbl
[4] G. Kuperberg, What is a Virtual Link?, Algebraic and Geometric Topology, 3:20 (2003), 587–591 | DOI | MR | Zbl
[5] H. A. Dye, L. H. Kauffman, “Minimal surface representations of virtual knots and links”, Algebraic Geometric Topology, 5 (2005), 509–535 | DOI | MR | Zbl
[6] A. A. Akimova, S. V. Matveev, “Klassifikatsiya uzlov maloi slozhnosti v utolschennom tore”, Vestnik NGU. Seriya: Matematika, mekhanika, informatika, 12:3 (2012), 10–21 | Zbl
[7] A. Akimova, S. Matveev, “Classification of genus 1 virtual knots having at most five classical crossings”, Journal of Knot Theory and Its Ramifications, 23:6 (2014), 1450031-1–1450031-19 | DOI | MR