Infinite series of Kishino type knots
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 11 (2014), pp. 975-980

Voir la notice de l'article provenant de la source Math-Net.Ru

We construct an infinite series of nontrivial virtual knots $\mathcal{K}_n$, $n \geqslant 2$. Each knot in this series is a connected sum of trivial virtual knots. We prove that for each $n$ the genus of $\mathcal{K}_n$ is equal to $n$. As a consequence, two knots $\mathcal{K}_i$ and $\mathcal{K}_j$ are non-equivalent iff $i\neq j$.
Keywords: Kishino knot, knot in thickened surface, virtual knot, genus of the knot.
@article{SEMR_2014_11_a46,
     author = {Ph. G. Korablev},
     title = {Infinite series of {Kishino} type knots},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {975--980},
     publisher = {mathdoc},
     volume = {11},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2014_11_a46/}
}
TY  - JOUR
AU  - Ph. G. Korablev
TI  - Infinite series of Kishino type knots
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2014
SP  - 975
EP  - 980
VL  - 11
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2014_11_a46/
LA  - ru
ID  - SEMR_2014_11_a46
ER  - 
%0 Journal Article
%A Ph. G. Korablev
%T Infinite series of Kishino type knots
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2014
%P 975-980
%V 11
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2014_11_a46/
%G ru
%F SEMR_2014_11_a46
Ph. G. Korablev. Infinite series of Kishino type knots. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 11 (2014), pp. 975-980. http://geodesic.mathdoc.fr/item/SEMR_2014_11_a46/