On two classes of dense 2-generator subgroups in $\mathbb C$
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 11 (2014), pp. 891-895.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider dense 2-generator multiplicative subgroups in $\mathbb C$ and show that for each point $z\in\mathbb{C} $ the set of limit values for the arguments of the powers of each generator at the point $z$ is either finite or is $[-\pi,\pi]$.
Keywords: Kronecker sets, dense groups, continued fractions.
@article{SEMR_2014_11_a44,
     author = {A. V. Tetenov and K. G. Kamalutdinov and D. A. Vaulin},
     title = {On two classes of dense 2-generator subgroups in $\mathbb C$},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {891--895},
     publisher = {mathdoc},
     volume = {11},
     year = {2014},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2014_11_a44/}
}
TY  - JOUR
AU  - A. V. Tetenov
AU  - K. G. Kamalutdinov
AU  - D. A. Vaulin
TI  - On two classes of dense 2-generator subgroups in $\mathbb C$
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2014
SP  - 891
EP  - 895
VL  - 11
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2014_11_a44/
LA  - en
ID  - SEMR_2014_11_a44
ER  - 
%0 Journal Article
%A A. V. Tetenov
%A K. G. Kamalutdinov
%A D. A. Vaulin
%T On two classes of dense 2-generator subgroups in $\mathbb C$
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2014
%P 891-895
%V 11
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2014_11_a44/
%G en
%F SEMR_2014_11_a44
A. V. Tetenov; K. G. Kamalutdinov; D. A. Vaulin. On two classes of dense 2-generator subgroups in $\mathbb C$. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 11 (2014), pp. 891-895. http://geodesic.mathdoc.fr/item/SEMR_2014_11_a44/

[1] V. V. Aseev, A. V. Tetenov, A. S. Kravchenko, “On Self-Similar Jordan Curves on the Plane”, Siberian Mathematical Journal, 44:3 (2003), 379–386 | DOI | MR | Zbl

[2] J. W. S. Cassels, An introduction to Diophantine approximation, Cambridge Tracts in Math, and Math. Phys., 45, Cambridge Univ. Press, New York, 1957 | MR | Zbl

[3] K. G. Kamalutdinov, A. V. Tetenov, D. A. Vaulin, Self-Similar Jordan Arcs, which do not satisfy Weak Separation Property, in prepapation

[4] A. Ya. Khinchin, Continued fractions, Dover Publications, Mineola, N.Y., 1997 | MR