On two classes of dense 2-generator subgroups in $\mathbb C$
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 11 (2014), pp. 891-895
Cet article a éte moissonné depuis la source Math-Net.Ru
We consider dense 2-generator multiplicative subgroups in $\mathbb C$ and show that for each point $z\in\mathbb{C} $ the set of limit values for the arguments of the powers of each generator at the point $z$ is either finite or is $[-\pi,\pi]$.
Keywords:
Kronecker sets, dense groups, continued fractions.
@article{SEMR_2014_11_a44,
author = {A. V. Tetenov and K. G. Kamalutdinov and D. A. Vaulin},
title = {On two classes of dense 2-generator subgroups in $\mathbb C$},
journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
pages = {891--895},
year = {2014},
volume = {11},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SEMR_2014_11_a44/}
}
TY - JOUR AU - A. V. Tetenov AU - K. G. Kamalutdinov AU - D. A. Vaulin TI - On two classes of dense 2-generator subgroups in $\mathbb C$ JO - Sibirskie èlektronnye matematičeskie izvestiâ PY - 2014 SP - 891 EP - 895 VL - 11 UR - http://geodesic.mathdoc.fr/item/SEMR_2014_11_a44/ LA - en ID - SEMR_2014_11_a44 ER -
A. V. Tetenov; K. G. Kamalutdinov; D. A. Vaulin. On two classes of dense 2-generator subgroups in $\mathbb C$. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 11 (2014), pp. 891-895. http://geodesic.mathdoc.fr/item/SEMR_2014_11_a44/
[1] V. V. Aseev, A. V. Tetenov, A. S. Kravchenko, “On Self-Similar Jordan Curves on the Plane”, Siberian Mathematical Journal, 44:3 (2003), 379–386 | DOI | MR | Zbl
[2] J. W. S. Cassels, An introduction to Diophantine approximation, Cambridge Tracts in Math, and Math. Phys., 45, Cambridge Univ. Press, New York, 1957 | MR | Zbl
[3] K. G. Kamalutdinov, A. V. Tetenov, D. A. Vaulin, Self-Similar Jordan Arcs, which do not satisfy Weak Separation Property, in prepapation
[4] A. Ya. Khinchin, Continued fractions, Dover Publications, Mineola, N.Y., 1997 | MR