Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SEMR_2014_11_a42, author = {A. A. Husainov}, title = {Homology and bisimulation of asynchronous transition systems and {Petri} nets}, journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a}, pages = {863--877}, publisher = {mathdoc}, volume = {11}, year = {2014}, language = {en}, url = {http://geodesic.mathdoc.fr/item/SEMR_2014_11_a42/} }
TY - JOUR AU - A. A. Husainov TI - Homology and bisimulation of asynchronous transition systems and Petri nets JO - Sibirskie èlektronnye matematičeskie izvestiâ PY - 2014 SP - 863 EP - 877 VL - 11 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SEMR_2014_11_a42/ LA - en ID - SEMR_2014_11_a42 ER -
A. A. Husainov. Homology and bisimulation of asynchronous transition systems and Petri nets. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 11 (2014), pp. 863-877. http://geodesic.mathdoc.fr/item/SEMR_2014_11_a42/
[1] A. Joyal, M. Nielsen, G. Winskel, “Bisimulation from open maps”, Information and Computation, 127 (1996), 164–185 | DOI | MR | Zbl
[2] R. Milner, Communication and concurrency, International Series in Computer Science, Prentice Hall, New York, 1989 | Zbl
[3] M. Nielsen, G. Winskel, “Petri nets and bisimulation”, Theoretical Computer Science, 153:1–2 (1996), 211–244 | DOI | MR | Zbl
[4] M. Herlihy, N. Shavit, “The Topological Structure of Asynchronous Computability”, Journal of ACM, 46:6 (1999), 858–923 | DOI | MR | Zbl
[5] E. Goubault, T. P. Jensen, “Homology of higher dimensional automata”, Lecture Notes in Computer Science, 630, Springer, Berlin, 1992, 254–268 | DOI | MR
[6] E. Goubault, The Geometry of Concurrency, Ph. D. Thesis, Ecole Normale Supérieure, 1995
[7] L. Fajstrup, M. Raußen, E. Goubault, “Algebraic topology and concurrency”, Theoretical Computer Science, 357:1–3 (2006), 241–278 | DOI | MR | Zbl
[8] E. Goubault, E. Haucourt, S. Krishnan, “Covering space theory for directed topology”, Theory and Applications of Categories, 22:9 (2009), 252–268 | MR | Zbl
[9] U. Fahrenberg, A. Legay, “History-Preserving Bisimilarity for Higher-Dimensional Automata via Open Maps”, Electronic Notes in Theoretical Computer Science, 538 (2013), 165–178 | DOI | MR
[10] A. Husainov, “On the homology of small categories and asynchronous transition systems”, Homology, Homotopy and Applications, 6:1 (2004), 439–471 | DOI | MR | Zbl
[11] A. A. Khusainov, V. E. Lopatkin, I. A. Treshchev, “Studying a mathematical model of parallel computation by algebraic topology methods”, Journal of Applied and Industrial Mathematics, 3:3 (2009), 353–363 | DOI | MR
[12] A. A. Husainov, “The cubical homology of trace monoids”, Far Eastern Mathematical Journal, 12:1 (2012), 108–122 http://mi.mathnet.ru/eng/dvmg/v12/i1/p108 | MR | Zbl
[13] A. A. Husainov, “The Homology of Partial Monoid Actions and Petri Nets”, Applied Categorical Structures, 21:6 (2013), 587–615 | DOI | MR | Zbl
[14] G. Winskel, M. Nielsen, “Models for Concurrency”, Handbook of Logic in Computer Science, v. 4, eds. Abramsky, Gabbay Maibaum, Oxford University Press, Oxford, 1995, 1–148 | MR
[15] M. A. Bednarczyk, Categories of Asynchronous Systems, Ph. D. thesis, University of Sussex; Report No 1/88, 1988
[16] V. Diekert, Y. Métivier, “Partial Commutation and Traces”, Handbook of formal languages, v. 3, Springer, New York, 1997, 457–533 | DOI | MR
[17] E. H. Spanier, Algebraic topology, McGraw-Hill Book Company, New York, 1966 | MR | Zbl