Tensor fields on the plane and Riesz transforms
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 11 (2014), pp. 709-724.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper we study symmetric tensor fields via complex coordinate system. The formulas for divergence $\delta$ and symmetric gradient $d$ of tensor fields in complex variables are derived thus we get the equations of Beltrami type. We obtain the general representation for the solenoidal tensor fields on the plane, which involves the Riesz transforms, their powers and the one real generating function $f\in L_2(\mathbb R^2)$. We present also the Helmholtz decomposition of the tensor fields in terms of Riesz transforms.
Keywords: solenoidal, potential tensor fields, Helmholtz decomposition, singular integral operators, Riesz transforms, Beltrami systems.
@article{SEMR_2014_11_a41,
     author = {S. G. Kazantsev},
     title = {Tensor fields on the plane and {Riesz} transforms},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {709--724},
     publisher = {mathdoc},
     volume = {11},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2014_11_a41/}
}
TY  - JOUR
AU  - S. G. Kazantsev
TI  - Tensor fields on the plane and Riesz transforms
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2014
SP  - 709
EP  - 724
VL  - 11
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2014_11_a41/
LA  - ru
ID  - SEMR_2014_11_a41
ER  - 
%0 Journal Article
%A S. G. Kazantsev
%T Tensor fields on the plane and Riesz transforms
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2014
%P 709-724
%V 11
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2014_11_a41/
%G ru
%F SEMR_2014_11_a41
S. G. Kazantsev. Tensor fields on the plane and Riesz transforms. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 11 (2014), pp. 709-724. http://geodesic.mathdoc.fr/item/SEMR_2014_11_a41/

[1] S. G. Kazantsev, A. A. Bukhgeim, “Singular value decomposition of the $2D$ fan-beam Radon transform of tensor fields”, J. of Inverse and Ill-Posed Problems, 12:3 (2004), 245–278 | DOI | MR | Zbl

[2] V. A. Sharafutdinov, Integralnaya geometriya tenzornykh polei, Nauka. Sibirskoe otdelenie, Novosibirsk, 1993 | MR | Zbl

[3] B. V. Boyarskii, “Teoriya obobschennogo analiticheskogo vektora”, Ann. Pol. Math., 17:3 (1966), 281–320 | MR | Zbl

[4] A. D. Dzhuraev, Metod singulyarnykh integralnykh uravnenii, Nauka, M., 1987 | MR

[5] E. Arbuzov, A. L. Bukhgeim, S. G. Kazantsev, “Two-dimensional tomography problems and the theory of $A$-analytic functions”, Siberian Adv. Math., 8:4 (1998), 1–20 | MR

[6] I. N. Vekua, Obobschennye analiticheskie funktsii, Nauka, M., 1988 | MR | Zbl

[7] S. G. Mikhlin, Mnogomernye singulyarnye integraly i integralnye uravneniya, Fizmatgiz, M., 1962 | MR | Zbl

[8] T. Iwaniec, G. Martin, “Riesz transforms and related singular integrals”, Journal fur die reine und angewandte Mathematik, 473 (1995), 25–58 | MR

[9] H. Begehr, G. N. Hile, “A hierarchy of integral operators”, Rocky Mountain J. Math., 27:3 (1997), 669–706 | DOI | MR | Zbl

[10] A. Calderon, A. Zygmund, “On the existence of certain singular integrals”, Acta Math., 88 (1952), 85–139 | DOI | MR | Zbl

[11] I. Stein, Singulyarnye integraly i differentsialnye svoistva funktsii, Mir, M., 1973 | MR