The combined Monte-Carlo method to calculate the capital of the optimal portfolio in nonlinear models of financial indexes
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 11 (2014), pp. 1021-1034.

Voir la notice de l'article provenant de la source Math-Net.Ru

The calculations in models of random processes with influence of events are considered. The trajectories of these processes are continuous concatenation of trajectories of diffusion processes with constant coefficients. The suggested method is the combination of the Monte-Carlo method and exact calculation. The examples of popular models, for which investigated models can be used as the approximation, are presented.
Keywords: Monte-Carlo method, Black–Scholes formula, stochastic volatility.
@article{SEMR_2014_11_a39,
     author = {G. I. Beliavsky and N. V. Danilova},
     title = {The combined {Monte-Carlo} method to calculate the capital of the optimal portfolio in nonlinear models of financial indexes},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {1021--1034},
     publisher = {mathdoc},
     volume = {11},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2014_11_a39/}
}
TY  - JOUR
AU  - G. I. Beliavsky
AU  - N. V. Danilova
TI  - The combined Monte-Carlo method to calculate the capital of the optimal portfolio in nonlinear models of financial indexes
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2014
SP  - 1021
EP  - 1034
VL  - 11
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2014_11_a39/
LA  - ru
ID  - SEMR_2014_11_a39
ER  - 
%0 Journal Article
%A G. I. Beliavsky
%A N. V. Danilova
%T The combined Monte-Carlo method to calculate the capital of the optimal portfolio in nonlinear models of financial indexes
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2014
%P 1021-1034
%V 11
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2014_11_a39/
%G ru
%F SEMR_2014_11_a39
G. I. Beliavsky; N. V. Danilova. The combined Monte-Carlo method to calculate the capital of the optimal portfolio in nonlinear models of financial indexes. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 11 (2014), pp. 1021-1034. http://geodesic.mathdoc.fr/item/SEMR_2014_11_a39/

[1] G. Belyavskii, N. Danilova, Diffuzionnye modeli so sluchainym pereklyucheniem parametrov. Raschety i finansovye prilozheniya, Lambert Academic Publishing, Saarbrucken, 2012

[2] A. Shiryaev, Osnovy stokhasticheskoi finansovoi matematiki. Teoriya, FAZIS, M., 1998

[3] P. Baldi, L. Mazliak, P. Priouret, Martingales and Markov chains, Chapman and Hall, CRC, 2002 | MR | Zbl

[4] A. Pascussi, PDE and Martingal methods in option pricing, Springer, 2012

[5] I. Karatazas, S. Sherve, Brownian motion and stochastic calculus, Springer, 1991 | MR

[6] H. Johnson, D. Shanno, “Option pricing when the variance is changing”, Journal of Financial and Quantitative Analysis, 22 (1987), 143–151 | DOI

[7] J. Hull, A. White, “The pricing of options on assets with stochastic volatilities”, Journal of Finance, 2 (1987), 281–300 | DOI

[8] L. Scott, “Option pricing when the variance changes randomly: theory, estimation and an application”, Journal of Financial and Quantitative Analysis, 22 (1987), 419–438 | DOI

[9] J. B. Wiggins, “Option values under stochastic volatility: theory and empirical estimates”, Journal of Financial Economics, 2 (1987), 351–372 | DOI

[10] E. Stein, J. Stein, “Stock price distributions with stochastic volatiliy: an analytic approach”, Reviews of Financial Studies, 4 (1991), 727–752 | DOI

[11] S. Heston, “A closed-form solution for options with stochastic volatility with applications to bondand currency options”, Reviews of Financial Studies, 2 (1993), 327–343 | DOI

[12] R. Schobel, J. Zhu, “Stochastic volatility with an Ornstein–Uhlenbeck process: an extension”, European Financial Review, 3 (1999), 23–46 | DOI | Zbl

[13] L. C. G. Rogers, L. A. M. Veraart, “A stochastic volatility alternative to SABR”, Journal of Applied Probability, 4 (2008), 1071–1085 | DOI | MR | Zbl

[14] R. Frontczak, “Valuing Options in Heston's Stochastic Volatility Model: Another Analytical Approach”, Journal of Applied Mathematics, 4 (2011), 18–28 | MR

[15] R. Engle, “Autoregressive conditional heterocsedasticity with estimation of the variance of United Kingdom inflation”, Econometrica, 4 (1982), 987–1008 | DOI | MR

[16] A. Shiryaev, Osnovy stokhasticheskoi finansovoi matematiki. Fakty, modeli, FAZIS, M., 1998

[17] S. L. Heston, S. Nandi, “A closed-form GARCH option valuation model”, Review of Financial Studies, 3 (2000), 585–625 | DOI

[18] K. Chourdakis, “Non-affine option pricing”, Journal of Derivatives, 3 (2004), 10–25 | DOI

[19] P. Carr, “Randomization and the American put”, The review of financial studies, 3 (1998), 597–626 | DOI

[20] N. Chen, L. Jeff Hong, “Monte-Carlo simulation in financial engineering”, Proceedings of the 2007 Winter Simulation Conference, IEEE, 2007, 919–931 | DOI

[21] P. Kloeden, E. Platen, Numerical solution of stochastic differential equations, Springer, 1995 | MR

[22] A. Kuznetsov, A. Kyprianou, J. Pardo, K. van Schaik, “A Wiener–Hopf Monte-Carlo simulation technique for Levy processes”, The annals of applied probability, 6 (2011), 1–20 | MR