Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SEMR_2014_11_a39, author = {G. I. Beliavsky and N. V. Danilova}, title = {The combined {Monte-Carlo} method to calculate the capital of the optimal portfolio in nonlinear models of financial indexes}, journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a}, pages = {1021--1034}, publisher = {mathdoc}, volume = {11}, year = {2014}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/SEMR_2014_11_a39/} }
TY - JOUR AU - G. I. Beliavsky AU - N. V. Danilova TI - The combined Monte-Carlo method to calculate the capital of the optimal portfolio in nonlinear models of financial indexes JO - Sibirskie èlektronnye matematičeskie izvestiâ PY - 2014 SP - 1021 EP - 1034 VL - 11 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SEMR_2014_11_a39/ LA - ru ID - SEMR_2014_11_a39 ER -
%0 Journal Article %A G. I. Beliavsky %A N. V. Danilova %T The combined Monte-Carlo method to calculate the capital of the optimal portfolio in nonlinear models of financial indexes %J Sibirskie èlektronnye matematičeskie izvestiâ %D 2014 %P 1021-1034 %V 11 %I mathdoc %U http://geodesic.mathdoc.fr/item/SEMR_2014_11_a39/ %G ru %F SEMR_2014_11_a39
G. I. Beliavsky; N. V. Danilova. The combined Monte-Carlo method to calculate the capital of the optimal portfolio in nonlinear models of financial indexes. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 11 (2014), pp. 1021-1034. http://geodesic.mathdoc.fr/item/SEMR_2014_11_a39/
[1] G. Belyavskii, N. Danilova, Diffuzionnye modeli so sluchainym pereklyucheniem parametrov. Raschety i finansovye prilozheniya, Lambert Academic Publishing, Saarbrucken, 2012
[2] A. Shiryaev, Osnovy stokhasticheskoi finansovoi matematiki. Teoriya, FAZIS, M., 1998
[3] P. Baldi, L. Mazliak, P. Priouret, Martingales and Markov chains, Chapman and Hall, CRC, 2002 | MR | Zbl
[4] A. Pascussi, PDE and Martingal methods in option pricing, Springer, 2012
[5] I. Karatazas, S. Sherve, Brownian motion and stochastic calculus, Springer, 1991 | MR
[6] H. Johnson, D. Shanno, “Option pricing when the variance is changing”, Journal of Financial and Quantitative Analysis, 22 (1987), 143–151 | DOI
[7] J. Hull, A. White, “The pricing of options on assets with stochastic volatilities”, Journal of Finance, 2 (1987), 281–300 | DOI
[8] L. Scott, “Option pricing when the variance changes randomly: theory, estimation and an application”, Journal of Financial and Quantitative Analysis, 22 (1987), 419–438 | DOI
[9] J. B. Wiggins, “Option values under stochastic volatility: theory and empirical estimates”, Journal of Financial Economics, 2 (1987), 351–372 | DOI
[10] E. Stein, J. Stein, “Stock price distributions with stochastic volatiliy: an analytic approach”, Reviews of Financial Studies, 4 (1991), 727–752 | DOI
[11] S. Heston, “A closed-form solution for options with stochastic volatility with applications to bondand currency options”, Reviews of Financial Studies, 2 (1993), 327–343 | DOI
[12] R. Schobel, J. Zhu, “Stochastic volatility with an Ornstein–Uhlenbeck process: an extension”, European Financial Review, 3 (1999), 23–46 | DOI | Zbl
[13] L. C. G. Rogers, L. A. M. Veraart, “A stochastic volatility alternative to SABR”, Journal of Applied Probability, 4 (2008), 1071–1085 | DOI | MR | Zbl
[14] R. Frontczak, “Valuing Options in Heston's Stochastic Volatility Model: Another Analytical Approach”, Journal of Applied Mathematics, 4 (2011), 18–28 | MR
[15] R. Engle, “Autoregressive conditional heterocsedasticity with estimation of the variance of United Kingdom inflation”, Econometrica, 4 (1982), 987–1008 | DOI | MR
[16] A. Shiryaev, Osnovy stokhasticheskoi finansovoi matematiki. Fakty, modeli, FAZIS, M., 1998
[17] S. L. Heston, S. Nandi, “A closed-form GARCH option valuation model”, Review of Financial Studies, 3 (2000), 585–625 | DOI
[18] K. Chourdakis, “Non-affine option pricing”, Journal of Derivatives, 3 (2004), 10–25 | DOI
[19] P. Carr, “Randomization and the American put”, The review of financial studies, 3 (1998), 597–626 | DOI
[20] N. Chen, L. Jeff Hong, “Monte-Carlo simulation in financial engineering”, Proceedings of the 2007 Winter Simulation Conference, IEEE, 2007, 919–931 | DOI
[21] P. Kloeden, E. Platen, Numerical solution of stochastic differential equations, Springer, 1995 | MR
[22] A. Kuznetsov, A. Kyprianou, J. Pardo, K. van Schaik, “A Wiener–Hopf Monte-Carlo simulation technique for Levy processes”, The annals of applied probability, 6 (2011), 1–20 | MR