Random multiple access with common energy harvesting mechanism
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 11 (2014), pp. 896-905.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider classical synchronised multiple access system with a single transmission channel, randomised transmission protocol (ALOHA) and additional common energy supply mechanism: any message requires charging energy for transmission. There are two stochastic renewal inputs to the system, of messages and of energy supply. We study conditions on these inputs for (in)stability of the system.
Keywords: random multiple access; ALOHA algorithm; stochastic energy supply; (in)stability; generalised Foster criterion.
@article{SEMR_2014_11_a37,
     author = {D. K. Kim and A. M. Turlikov and S. G. Foss},
     title = {Random multiple access with common energy harvesting mechanism},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {896--905},
     publisher = {mathdoc},
     volume = {11},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2014_11_a37/}
}
TY  - JOUR
AU  - D. K. Kim
AU  - A. M. Turlikov
AU  - S. G. Foss
TI  - Random multiple access with common energy harvesting mechanism
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2014
SP  - 896
EP  - 905
VL  - 11
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2014_11_a37/
LA  - ru
ID  - SEMR_2014_11_a37
ER  - 
%0 Journal Article
%A D. K. Kim
%A A. M. Turlikov
%A S. G. Foss
%T Random multiple access with common energy harvesting mechanism
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2014
%P 896-905
%V 11
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2014_11_a37/
%G ru
%F SEMR_2014_11_a37
D. K. Kim; A. M. Turlikov; S. G. Foss. Random multiple access with common energy harvesting mechanism. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 11 (2014), pp. 896-905. http://geodesic.mathdoc.fr/item/SEMR_2014_11_a37/

[1] Xun Zhou, Rui Zhang, Chin Keong Ho, “Wireless Information and Power Transfer in Multiuser OFDM Systems”, IEEE Transactions on Wireless Communications, 13:4 (2014), 2282–2294 | DOI

[2] N. Abramson, “Development of the ALOHANET”, IEEE Trans. Info. Theory, 31 (1985), 119–123 | DOI | Zbl

[3] G. Fayolle, E. Gelenbe, J. Labetoulle, “Stability and optimal control of the packet switching broadcast channel”, Journal of the ACM, 24:3 (1977), 375–386 | DOI | MR | Zbl

[4] A. Bergman, M. Sidi, “Energy efficiency of collision resolution protocols”, Computer Communications, 29 (2006), 3397–3415 | DOI

[5] J. Jeon, A. Ephremides, “The stability region of random multiple access under stochastic energy harvesting”, Proceedings of the IEEE International Symposium on Information Theory (ISIT) (2011), 1796–1800

[6] S. Foss, D. Kim, A. Turlikov, “Models with Common Energy Harvesting for the Random Multiple Access System”, XIV International symposium on problems of redundancy in information and control systems (2014), 39–42

[7] J. P. Kelly, I. M. McPhee, “The Number of Packets Transmitted by Collision Detect Random Access Schemes”, Annals of Probability, 15:4 (1987), 1557–1568 | DOI | MR | Zbl

[8] S. Foss, T. Konstantopoulos, “An overview of some stochastic stability methods”, Journal of Operation Research Society Japan, 47:4 (2004), 275–303 | MR | Zbl

[9] N. Vvedenskaya, Yu. Suhov, “Multi-access system with many users: Stability and metastability”, Problems of Information Transmission, 43:3 (2007), 263–269 | DOI | MR | Zbl

[10] B. L. Cannon, J. F. Hoburg, D. D. Stancil, S. C. Goldstein, “Magnetic Resonant Coupling As a Potential Means for Wireless Power Transfer to Multiple Small Receivers”, IEEE Transactions on Power Electronics, 24:7 (2009), 1819–1825 | DOI | MR