The It\^{o} integral and the Hitsuda--Skorohod integral in the infinite dimensional case
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 11 (2014), pp. 185-199.

Voir la notice de l'article provenant de la source Math-Net.Ru

The criterion of adaptedness of a Hilbert space valued stochastic process to the filtration generated by a cylindrical Wiener process is obtained in terms of the S-transform. The criterion is then used to establish the connection between the Itô integral with respect to a cylindrical Wiener process and the Hitsuda–Skhorohod integral in the space of Hilbert space valued stochastic distributions.
Keywords: Itô integral, Hitsuda–Skorohod integral, cylindrical Wiener process
Mots-clés : S-transform.
@article{SEMR_2014_11_a31,
     author = {M. A. Alshanskiy},
     title = {The {It\^{o}} integral and the {Hitsuda--Skorohod} integral in the infinite dimensional case},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {185--199},
     publisher = {mathdoc},
     volume = {11},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2014_11_a31/}
}
TY  - JOUR
AU  - M. A. Alshanskiy
TI  - The It\^{o} integral and the Hitsuda--Skorohod integral in the infinite dimensional case
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2014
SP  - 185
EP  - 199
VL  - 11
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2014_11_a31/
LA  - ru
ID  - SEMR_2014_11_a31
ER  - 
%0 Journal Article
%A M. A. Alshanskiy
%T The It\^{o} integral and the Hitsuda--Skorohod integral in the infinite dimensional case
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2014
%P 185-199
%V 11
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2014_11_a31/
%G ru
%F SEMR_2014_11_a31
M. A. Alshanskiy. The It\^{o} integral and the Hitsuda--Skorohod integral in the infinite dimensional case. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 11 (2014), pp. 185-199. http://geodesic.mathdoc.fr/item/SEMR_2014_11_a31/

[1] G. DaPrato, J. Zabczyk, Stochastic equations in infinite dimensions, Cambridge University Press, Cambridge, 1992 | MR

[2] L. Gawarecki, V. Mandrekar, Stochastic Differential Equations in Infinite Dimensions with Applications to Stochastic Partial Differential Equations, Springer-Verlag, Berlin–Heidelberg, 2011 | MR | Zbl

[3] T. Hida, Analysis of Brownian Functionals, Carleton Mathematical Lecture Notes, 13, 1975 | MR | Zbl

[4] T. Khida, Brounovskoe dvizhenie, Nauka, M., 1987 | MR

[5] I. Kubo, S. Takenaka, “Calculus on Gaussian white noise, I”, Proc. Japan. Acad., 56A (1980), 376–380 | DOI | MR | Zbl

[6] I. Kubo, S. Takenaka, “Calculus on Gaussian white noise, II”, Proc. Japan. Acad., 56A (1980), 411–416 | DOI | MR | Zbl

[7] I. Kubo, S. Takenaka, “Calculus on Gaussian white noise, III”, Proc. Japan. Acad., 57A (1981), 433–437 | DOI | MR | Zbl

[8] I. Kubo, S. Takenaka, “Calculus on Gaussian white noise, IV”, Proc. Japan. Acad., 58A (1982), 186–189 | DOI | MR | Zbl

[9] Kondratiev Yu. G., Streit L., “Spaces of white noise distributions: Constructions, Descriptions, Applications, I”, Reports on Math. Phys., 33 (1993), 341–366 | DOI | MR

[10] H.-H. Kuo, White Noise Distribution Theory, CRC Press, 1996 | MR | Zbl

[11] H. Holden, B. Øksendal, J. Ubøe, T. Zhang, Stochastic Partial Differential Equations. A Modelling, White Noise Functional Approach, Birkhauser, 1996 | MR | Zbl

[12] I. V. Melnikova, A. I. Filinkov, M. A. Alshansky, “Abstract Stochastic Equations. II: Solutions in Spaces of Abstract Stochastic Distributions”, J. of Math. Sci., 116:5 (2003), 3620–3656 | DOI | MR | Zbl

[13] I. V. Melnikova, M. A. Alshanskii, “Obobschennaya korrektnost zadachi Koshi dlya abstraktnogo stokhasticheskogo uravneniya s multiplikativnym shumom”, Trudy instituta matematiki i mekhaniki UrO RAN (IMM), 8:1 (2012), 251–267