On exponential inequalities for canonical V-statistics
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 11 (2014), pp. 70-75.

Voir la notice de l'article provenant de la source Math-Net.Ru

We offer a new proof for the known exponential inequalities (see Borisov (1991)) for the distributions of canonical V-statistics with kernels allowing factorizable majorants. The requirement for observations to be independent and identically distributed was weakened.
Mots-clés : von Mises’ statistic
Keywords: exponential inequality.
@article{SEMR_2014_11_a30,
     author = {P. S. Ruzankin},
     title = {On exponential inequalities for canonical {V-statistics}},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {70--75},
     publisher = {mathdoc},
     volume = {11},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2014_11_a30/}
}
TY  - JOUR
AU  - P. S. Ruzankin
TI  - On exponential inequalities for canonical V-statistics
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2014
SP  - 70
EP  - 75
VL  - 11
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2014_11_a30/
LA  - ru
ID  - SEMR_2014_11_a30
ER  - 
%0 Journal Article
%A P. S. Ruzankin
%T On exponential inequalities for canonical V-statistics
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2014
%P 70-75
%V 11
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2014_11_a30/
%G ru
%F SEMR_2014_11_a30
P. S. Ruzankin. On exponential inequalities for canonical V-statistics. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 11 (2014), pp. 70-75. http://geodesic.mathdoc.fr/item/SEMR_2014_11_a30/

[1] Borisov I. S., “Approksimatsiya raspredelenii statistik Mizesa s mnogomernymi yadrami”, Sib. mat. zhurn., 32:4 (1991), 20–35 | MR

[2] Borisov I. S., Volodko N. V., “Eksponentsialnye neravenstva dlya raspredelenii $U$- i $V$-statistik ot zavisimykh nablyudenii”, Matem. tr., 11:2 (2008), 3–19 | MR | Zbl

[3] Borovkov A. A., Teoriya veroyatnostei, Librokom, M., 2009

[4] Adamczak R., “Moment inequalities for U-statistics”, Ann. Probab., 34:6 (2006), 2288–2314 | DOI | MR | Zbl

[5] Arcones M. A., Giné E., “Limit theorems for U-processes”, Ann. Probab., 21:3 (1993), 1494–1542 | DOI | MR | Zbl

[6] Giné E., Latala R., Zinn J., “Exponential and moment inequalities for U-statistics”, High Dimensional Probability II (Seattle, WA, 1999), Progr. Probab., 47, Birkhäuser, Boston, 2000, 13–38 | MR | Zbl

[7] Giné E., Mason D. M., “On local U-statistic processes and the estimation of densities of functions of several sample variables”, Ann. Stat., 35:3 (2007), 1105–1145 | DOI | MR | Zbl

[8] Hoeffding W., “Probability inequalities for sums of bounded random variables”, J. Amer. Statist. Assoc., 58 (1963), 13–30 | DOI | MR | Zbl