Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SEMR_2014_11_a28, author = {M. A. Grechkoseeva and A. M. Staroletov}, title = {Unrecognizability by spectrum of finite simple orthogonal groups of~dimension nine}, journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a}, pages = {921--928}, publisher = {mathdoc}, volume = {11}, year = {2014}, language = {en}, url = {http://geodesic.mathdoc.fr/item/SEMR_2014_11_a28/} }
TY - JOUR AU - M. A. Grechkoseeva AU - A. M. Staroletov TI - Unrecognizability by spectrum of finite simple orthogonal groups of~dimension nine JO - Sibirskie èlektronnye matematičeskie izvestiâ PY - 2014 SP - 921 EP - 928 VL - 11 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SEMR_2014_11_a28/ LA - en ID - SEMR_2014_11_a28 ER -
%0 Journal Article %A M. A. Grechkoseeva %A A. M. Staroletov %T Unrecognizability by spectrum of finite simple orthogonal groups of~dimension nine %J Sibirskie èlektronnye matematičeskie izvestiâ %D 2014 %P 921-928 %V 11 %I mathdoc %U http://geodesic.mathdoc.fr/item/SEMR_2014_11_a28/ %G en %F SEMR_2014_11_a28
M. A. Grechkoseeva; A. M. Staroletov. Unrecognizability by spectrum of finite simple orthogonal groups of~dimension nine. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 11 (2014), pp. 921-928. http://geodesic.mathdoc.fr/item/SEMR_2014_11_a28/
[1] W. J. Shi, “The characterization of the sporadic simple groups by their element orders”, Algebra Colloq., 1:2 (1994), 159–166 | MR | Zbl
[2] V. D. Mazurov, “Recognition of finite groups by a set of orders of their elements”, Algebra Logic, 37:6 (1998), 371–379 | DOI | MR | Zbl
[3] J. H. Conway, R. T. Curtis, S. P. Norton, R. A. Parker, R. A. Wilson, Atlas of finite groups, Clarendon Press, Oxford, 1985 | MR | Zbl
[4] A. V. Vasil'ev, M. A. Grechkoseeva, On the structure of finite groups isospectral to finite simple groups, 2014, arXiv: 1409.8086 [math.GR]
[5] V. D. Mazurov, A. R. Moghaddamfar, “The recognition of the simple group $S_8(2)$ by its spectrum”, Algebra Colloq., 13:4 (2006), 643–646 | DOI | MR | Zbl
[6] P. Kleidman, M. Liebeck, The subgroup structure of the finite classical groups, London Mathematical Society Lecture Note Series, 129, Cambridge University Press, Cambridge, 1990 | MR | Zbl
[7] J. Bray, D. Holt, C. Roney-Dougal, The maximal subgroups of the low-dimensional finite classical groups, London Mathematical Society Lecture Note Series, 407, Cambridge University Press, Cambridge, 2013 | MR | Zbl
[8] A. A. Buturlakin, “Spectra of finite symplectic and orthogonal groups”, Siberian Adv. Math., 21:3 (2011), 176–210 | DOI | MR
[9] M. W. Liebeck, G. M. Seitz, Unipotent and nilpotent classes in simple algebraic groups and Lie algebras, Mathematical Surveys and Monographs, 180, American Mathematical Society, Providence, RI, 2012 | DOI | MR | Zbl
[10] G. E. Wall, “On the conjugacy classes in the unitary, symplectic and orthogonal groups”, J. Austr. Math. Soc., 3 (1963), 1–62 | DOI | MR | Zbl
[11] A. A. Buturlakin, M. A. Grechkoseeva, “The cyclic structure of maximal tori in finite classical groups”, Algebra Logic, 46:2 (2007), 73–89 | DOI | MR | Zbl
[12] V. D. Mazurov, M. C. Xu, H. P. Cao, “Recognition of the finite simple groups $L_3(2^m)$ and $U_3(2^m)$ by their element orders”, Algebra Logic, 39:5 (2000), 324–334 | DOI | MR | Zbl
[13] M. Aschbacher, G. M. Seitz, “Involutions in {C}hevalley groups over fields of even order”, Nagoya Math. J., 63 (1976), 1–91 | MR | Zbl