Unrecognizability by spectrum of finite simple orthogonal groups of~dimension nine
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 11 (2014), pp. 921-928.

Voir la notice de l'article provenant de la source Math-Net.Ru

The spectrum of a finite group is the set of its elements orders. A group $G$ is said to be unrecognizable by spectrum if there are infinitely many pairwise non-isomorphic finite groups having the same spectrum as $G$. We prove that the simple orthogonal group $O_9(q)$ has the same spectrum as $V\rtimes O_8^-(q)$ where $V$ is the natural 8-dimensional module of the simple orthogonal group $O_8^-(q)$, and in particular $O_9(q)$ is unrecognizable by spectrum. Note that for $q=2$, the result was proved earlier by Mazurov and Moghaddamfar.
Keywords: spectrum, element order, finite simple group.
Mots-clés : orthogonal group
@article{SEMR_2014_11_a28,
     author = {M. A. Grechkoseeva and A. M. Staroletov},
     title = {Unrecognizability by spectrum of finite simple orthogonal groups of~dimension nine},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {921--928},
     publisher = {mathdoc},
     volume = {11},
     year = {2014},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2014_11_a28/}
}
TY  - JOUR
AU  - M. A. Grechkoseeva
AU  - A. M. Staroletov
TI  - Unrecognizability by spectrum of finite simple orthogonal groups of~dimension nine
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2014
SP  - 921
EP  - 928
VL  - 11
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2014_11_a28/
LA  - en
ID  - SEMR_2014_11_a28
ER  - 
%0 Journal Article
%A M. A. Grechkoseeva
%A A. M. Staroletov
%T Unrecognizability by spectrum of finite simple orthogonal groups of~dimension nine
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2014
%P 921-928
%V 11
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2014_11_a28/
%G en
%F SEMR_2014_11_a28
M. A. Grechkoseeva; A. M. Staroletov. Unrecognizability by spectrum of finite simple orthogonal groups of~dimension nine. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 11 (2014), pp. 921-928. http://geodesic.mathdoc.fr/item/SEMR_2014_11_a28/

[1] W. J. Shi, “The characterization of the sporadic simple groups by their element orders”, Algebra Colloq., 1:2 (1994), 159–166 | MR | Zbl

[2] V. D. Mazurov, “Recognition of finite groups by a set of orders of their elements”, Algebra Logic, 37:6 (1998), 371–379 | DOI | MR | Zbl

[3] J. H. Conway, R. T. Curtis, S. P. Norton, R. A. Parker, R. A. Wilson, Atlas of finite groups, Clarendon Press, Oxford, 1985 | MR | Zbl

[4] A. V. Vasil'ev, M. A. Grechkoseeva, On the structure of finite groups isospectral to finite simple groups, 2014, arXiv: 1409.8086 [math.GR]

[5] V. D. Mazurov, A. R. Moghaddamfar, “The recognition of the simple group $S_8(2)$ by its spectrum”, Algebra Colloq., 13:4 (2006), 643–646 | DOI | MR | Zbl

[6] P. Kleidman, M. Liebeck, The subgroup structure of the finite classical groups, London Mathematical Society Lecture Note Series, 129, Cambridge University Press, Cambridge, 1990 | MR | Zbl

[7] J. Bray, D. Holt, C. Roney-Dougal, The maximal subgroups of the low-dimensional finite classical groups, London Mathematical Society Lecture Note Series, 407, Cambridge University Press, Cambridge, 2013 | MR | Zbl

[8] A. A. Buturlakin, “Spectra of finite symplectic and orthogonal groups”, Siberian Adv. Math., 21:3 (2011), 176–210 | DOI | MR

[9] M. W. Liebeck, G. M. Seitz, Unipotent and nilpotent classes in simple algebraic groups and Lie algebras, Mathematical Surveys and Monographs, 180, American Mathematical Society, Providence, RI, 2012 | DOI | MR | Zbl

[10] G. E. Wall, “On the conjugacy classes in the unitary, symplectic and orthogonal groups”, J. Austr. Math. Soc., 3 (1963), 1–62 | DOI | MR | Zbl

[11] A. A. Buturlakin, M. A. Grechkoseeva, “The cyclic structure of maximal tori in finite classical groups”, Algebra Logic, 46:2 (2007), 73–89 | DOI | MR | Zbl

[12] V. D. Mazurov, M. C. Xu, H. P. Cao, “Recognition of the finite simple groups $L_3(2^m)$ and $U_3(2^m)$ by their element orders”, Algebra Logic, 39:5 (2000), 324–334 | DOI | MR | Zbl

[13] M. Aschbacher, G. M. Seitz, “Involutions in {C}hevalley groups over fields of even order”, Nagoya Math. J., 63 (1976), 1–91 | MR | Zbl