An example of differentially simple Lie algebra which is not a free module over its centroid
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 11 (2014), pp. 915-920.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this work we construct an example of differentially simple Lie algebra $\Lambda(L(\mathbb{M}))$ over an algebraically closed field of zero characteristic, such that $\Lambda(L(\mathbb{M}))$ is a finitely-generated projective non-free module over its centroid.
Keywords: differentially simple algebra, projective module, Lie algebra, algebra of polynomials.
@article{SEMR_2014_11_a27,
     author = {V. N. Zhelyabin and M. E. Goncharov},
     title = {An example of differentially simple {Lie} algebra which is not a free module over its centroid},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {915--920},
     publisher = {mathdoc},
     volume = {11},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2014_11_a27/}
}
TY  - JOUR
AU  - V. N. Zhelyabin
AU  - M. E. Goncharov
TI  - An example of differentially simple Lie algebra which is not a free module over its centroid
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2014
SP  - 915
EP  - 920
VL  - 11
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2014_11_a27/
LA  - ru
ID  - SEMR_2014_11_a27
ER  - 
%0 Journal Article
%A V. N. Zhelyabin
%A M. E. Goncharov
%T An example of differentially simple Lie algebra which is not a free module over its centroid
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2014
%P 915-920
%V 11
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2014_11_a27/
%G ru
%F SEMR_2014_11_a27
V. N. Zhelyabin; M. E. Goncharov. An example of differentially simple Lie algebra which is not a free module over its centroid. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 11 (2014), pp. 915-920. http://geodesic.mathdoc.fr/item/SEMR_2014_11_a27/

[1] R. E. Block, “Determination of the differentiably simple rings with a minimal ideal”, Ann. of Math., 90:3 (1969), 433–459 | DOI | MR | Zbl

[2] A. A. Popov, “Differentsialno prostye alternativnye algebry”, Algebra i logika, 49:5 (2010), 670–689 | MR | Zbl

[3] A. A. Popov, “Differentsialno prostye iordanovy algebry”, Sibirskii matematicheskii zhurnal, 54:4 (2013), 890–901 | MR | Zbl

[4] V. N. Zhelyabin, A. A. Popov, I. P. Shestakov, “Koordinatnoe koltso $n$-mernoi sfery i nekotorye primery differentsialno prostykh algebr”, Algebra i logika, 42:4 (2013), 416–434 | MR

[5] A. I. Maltsev, “Analiticheskie lupy”, Matematicheskii sbornik, 36(78):3 (1955), 569–575 | MR

[6] E. N. Kuzmin, I. P. Shestakov, “Neassotsiativnye struktury”, Algebra-6, Itogi nauki i tekhniki. Sovr. probl. matem. Fundam. napravl., 57, VINITI, M., 1990, 179–266

[7] E. N. Kuzmin, “Struktura i predstavleniya konechnomernykh algebr Maltseva”, Issledovaniya po teorii kolets i algebr, Trudy In-ta matem. SO AN SSSR, 16, Nauka, Novosibirsk, 1989, 75–101 | MR | Zbl

[8] P. O. Mikheev, “O vlozhenii algebr Maltseva v algebry Li”, Algebra i Logika, 31:2 (1992), 167–173 | MR | Zbl

[9] V. N. Zhelyabin, “Novye primery prostykh iordanovykh superalgebr nad proizvolnym polem kharakteristiki nol”, Algebra i analiz, 24:4 (2012), 84–96 | MR

[10] A. A. Suslin, “Algebraicheskaya $K$-teoriya”, Itogi nauki i tekhn. Ser. Algebra. Topol. Geom., 20, 1982, 71–152 | MR | Zbl

[11] A. A. Sagle, “Malcev algebras”, Trans. Am. Math. Soc., 101:3 (1961), 426–458 | DOI | MR | Zbl