An example of differentially simple Lie algebra which is not a free module over its centroid
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 11 (2014), pp. 915-920

Voir la notice de l'article provenant de la source Math-Net.Ru

In this work we construct an example of differentially simple Lie algebra $\Lambda(L(\mathbb{M}))$ over an algebraically closed field of zero characteristic, such that $\Lambda(L(\mathbb{M}))$ is a finitely-generated projective non-free module over its centroid.
Keywords: differentially simple algebra, projective module, Lie algebra, algebra of polynomials.
@article{SEMR_2014_11_a27,
     author = {V. N. Zhelyabin and M. E. Goncharov},
     title = {An example of differentially simple {Lie} algebra which is not a free module over its centroid},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {915--920},
     publisher = {mathdoc},
     volume = {11},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2014_11_a27/}
}
TY  - JOUR
AU  - V. N. Zhelyabin
AU  - M. E. Goncharov
TI  - An example of differentially simple Lie algebra which is not a free module over its centroid
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2014
SP  - 915
EP  - 920
VL  - 11
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2014_11_a27/
LA  - ru
ID  - SEMR_2014_11_a27
ER  - 
%0 Journal Article
%A V. N. Zhelyabin
%A M. E. Goncharov
%T An example of differentially simple Lie algebra which is not a free module over its centroid
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2014
%P 915-920
%V 11
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2014_11_a27/
%G ru
%F SEMR_2014_11_a27
V. N. Zhelyabin; M. E. Goncharov. An example of differentially simple Lie algebra which is not a free module over its centroid. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 11 (2014), pp. 915-920. http://geodesic.mathdoc.fr/item/SEMR_2014_11_a27/