The class character rings of sporadic groups
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 11 (2014), pp. 878-886.

Voir la notice de l'article provenant de la source Math-Net.Ru

The class character rings of sporadic groups have been found. For that we analysed character tables of sporadic groups from GAP. Also we determined those class character rings, which is trivial with respect to multiplication (class character ring is called trivial with respect to multiplication if it is ring of integers or subring of imaginary quadratic field). These results are initial steps towards description of central unit group of integral group rings of sporadic groups.
Mots-clés : sporadic group
Keywords: character, group rings.
@article{SEMR_2014_11_a26,
     author = {M. I. Molodorich},
     title = {The class character rings of sporadic groups},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {878--886},
     publisher = {mathdoc},
     volume = {11},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2014_11_a26/}
}
TY  - JOUR
AU  - M. I. Molodorich
TI  - The class character rings of sporadic groups
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2014
SP  - 878
EP  - 886
VL  - 11
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2014_11_a26/
LA  - ru
ID  - SEMR_2014_11_a26
ER  - 
%0 Journal Article
%A M. I. Molodorich
%T The class character rings of sporadic groups
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2014
%P 878-886
%V 11
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2014_11_a26/
%G ru
%F SEMR_2014_11_a26
M. I. Molodorich. The class character rings of sporadic groups. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 11 (2014), pp. 878-886. http://geodesic.mathdoc.fr/item/SEMR_2014_11_a26/

[1] R. Zh. Aleev, “Tsentralnye elementy tselochislennykh gruppovykh kolets”, Algebra i logika, 39:5 (2000), 513–525 | MR | Zbl

[2] R. Zh. Aleev, Tsentralnye edinitsy tselochislennykh gruppovykh kolets konechnykh grupp, Diss. na soiskanie stepeni d-ra fiz.-mat. nauk, Chelyabinsk, 2000

[3] K. Aierlend, M. Rouzen, Klassicheskoe vvedenie v sovremennuyu teoriyu chisel, Mir, M., 1987 | MR

[4] GAP-Groups, Algorithms and Programming. Ver. 4.5.6., , The GAP Group, 2012 http://www.gap-system.org