Three weaker variants of congruence permutability for semigroup varieties
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 11 (2014), pp. 567-604.

Voir la notice de l'article provenant de la source Math-Net.Ru

Congruences $\alpha$ and $\beta$ on an algebra $A$ are called $2{.}5$-permutable if the join of $\alpha$ and $\beta$ in the lattice of congruences on $A$ coincides with the set-theoretical union of the relations $\alpha\beta$ and $\beta\alpha$. A semigroup variety $\mathcal V$ is called almost $fi$-permutable [almost weakly $fi$-permutable, almost $fi$-$2{.}5$-permutable] if any two fully invariant congruences on a $\mathcal V$-free object $S$ permute [weakly permute, $2{.}5$-permute] whenever these congruences are contained in the least semilattice congruence on $S$. We completely determine all almost $fi$-permutable varieties, all almost $fi$-$2{.}5$-permutable varieties, and almost weakly $fi$-permutable varieties under the additional assumption that all nilsemigroups in a variety are semigroups with zero multiplication. The first and the third of the corresponding results correct some gaps in two previous papers.
Keywords: semigroup, variety, free object of a variety, fully invariant congruence, permutability, weak permutability, $2{.}5$-permutability.
@article{SEMR_2014_11_a18,
     author = {B. M. Vernikov and V. Yu. Shaprynskiǐ},
     title = {Three weaker variants of congruence permutability for semigroup varieties},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {567--604},
     publisher = {mathdoc},
     volume = {11},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2014_11_a18/}
}
TY  - JOUR
AU  - B. M. Vernikov
AU  - V. Yu. Shaprynskiǐ
TI  - Three weaker variants of congruence permutability for semigroup varieties
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2014
SP  - 567
EP  - 604
VL  - 11
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2014_11_a18/
LA  - ru
ID  - SEMR_2014_11_a18
ER  - 
%0 Journal Article
%A B. M. Vernikov
%A V. Yu. Shaprynskiǐ
%T Three weaker variants of congruence permutability for semigroup varieties
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2014
%P 567-604
%V 11
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2014_11_a18/
%G ru
%F SEMR_2014_11_a18
B. M. Vernikov; V. Yu. Shaprynskiǐ. Three weaker variants of congruence permutability for semigroup varieties. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 11 (2014), pp. 567-604. http://geodesic.mathdoc.fr/item/SEMR_2014_11_a18/

[1] B. M. Vernikov, “O mnogoobraziyakh polugrupp, reshetka podmnogoobrazii kotorykh razlozhima v pryamoe proizvedenie”, Algebraicheskie sistemy i ikh mnogoobraziya, Uralskii gos. un-t, Sverdlovsk, 1988, 41–52 | MR

[2] B. M. Vernikov, “Polumodulyarnye i dezargovy mnogoobraziya polugrupp: zapreschennye podmnogoobraziya”, Izv. Uralskogo gosuniversiteta, Ser. matem., mekhan., 2002, no. 22(4), 16–42 | MR | Zbl

[3] B. M. Vernikov, “Ob odnom oslablennom variante kongruents-perestanovochnosti dlya mnogoobrazii polugrupp”, Algebra i logika, 43 (2004), 3–31 | MR | Zbl

[4] B. M. Vernikov, “O mnogoobraziyakh polugrupp, na svobodnykh ob'ektakh kotorykh pochti vse vpolne invariantnye kongruentsii slabo perestanovochny”, Algebra i logika, 43 (2004), 635–649 | MR | Zbl

[5] B. M. Vernikov, Tozhdestva i kvazitozhdestva v reshetkakh mnogoobrazii polugrupp i svyazannye s nimi kongruentsii, Diss. ... d-ra fiz.-mat. nauk, Ural. gos. un-t, Ekaterinburg, 2004 | MR | Zbl

[6] B. M. Vernikov, “O mnogoobraziyakh polugrupp, na svobodnykh ob'ektakh kotorykh pochti vse vpolne invariantnye kongruentsii $1{.}5$-perestanovochny”, Izv. Uralskogo gosuniversiteta, Ser. matem., mekhan., 2005, no. 36(7), 95–106 | MR | Zbl

[7] B. M. Vernikov, “Kvazitozhdestva v modulyarnykh reshetkakh mnogoobrazii polugrupp”, Izv. Uralskogo gosuniversiteta, Ser. matem., mekhan., 2005, no. 38(8), 5–35 | MR | Zbl

[8] B. M. Vernikov, M. V. Volkov, “Reshetki nilpotentnykh mnogoobrazii polugrupp, II”, Izv. Uralskogo gosuniversiteta, Ser. matem., mekhan., 1998, no. 10(1), 13–33 | MR | Zbl

[9] B. M. Vernikov, M. V. Volkov, “Stroenie reshetok mnogoobrazii nilpolugrupp”, Izv. Uralskogo gosuniversiteta, Ser. matem., mekhan., 2000, no. 18(3), 34–52 | MR | Zbl

[10] M. V. Volkov, “Mnogoobraziya polugrupp s modulyarnoi reshetkoi podmnogoobrazii, II”, Izv. vuzov. Matem., 1992, no. 7, 3–8 | MR | Zbl

[11] M. V. Volkov, “Polumodulyarnye i dezargovy mnogoobraziya polugrupp: tozhdestva”, Izv. Uralskogo gosuniversiteta, Ser. matem., mekhan., 2002, no. 22(4), 43–61 | MR | Zbl

[12] E. A. Golubov, M. V. Sapir, “Finitno approksimiruemye mnogoobraziya polugrupp”, Izv. vuzov. Matem., 1982, no. 11, 21–29 | MR | Zbl

[13] L. N. Shevrin, B. M. Vernikov, M. V. Volkov, “Reshetki mnogoobrazii polugrupp”, Izv. vuzov. Matem., 2009, no. 3, 3–36 | MR | Zbl

[14] J. A. Gerhard, “Semigroups with an idempotent power. II: The lattice of equational subclasses of $[(xy)^2=xy]$”, Semigroup Forum, 14 (1977), 375–388 | DOI | MR | Zbl

[15] G. Grätzer, Lattice Theory: Foundation, Springer Basel AG, Basel, 2011 | MR

[16] P. R. Jones, “Congruence semimodular varieties of semigroups”, Lect. Notes Math., 1320, 1988, 162–171 | DOI | MR | Zbl

[17] P. Lipparini, “$n$-permutable varieties satisfy non trivial congruence identities”, Algebra Universalis, 33 (1995), 159–168 | DOI | MR | Zbl

[18] R. N. McKenzie, G. F. McNulty, W. F. Taylor, Algebras. Lattices. Varieties, v. I, Wadsworth Brooks/Cole, Monterey, 1987 | Zbl

[19] F. J. Pastijn, “Commuting fully invariant congruences on free completely regular semigroups”, Trans. Amer. Math. Soc., 323 (1991), 79–92 | DOI | MR | Zbl

[20] M. Petrich, “A construction and a classification of bands”, Math. Nachr., 48 (1971), 263–274 | DOI | MR | Zbl

[21] M. Petrich, N. R. Reilly, “The modularity of the lattice of varieties of completely regular semigroups and related representations”, Glasgow Math. J., 32 (1990), 137–152 | DOI | MR | Zbl

[22] L. Polák, “On varieties of completely regular semigroups, I”, Semigroup Forum, 32 (1985), 97–123 | DOI | MR | Zbl

[23] Gy. Pollák, “On the consequences of permutation identities”, Acta Sci. Math. (Szeged), 34 (1973), 323–333 | MR | Zbl

[24] E. J. Tully, “The equivalence, for semigroup varieties, of two properties concerning congruence relations”, Bull. Amer. Math. Soc., 70 (1964), 399–400 | DOI | MR | Zbl

[25] B. M. Vernikov, “On congruences of $G$-sets”, Comment. Math. Univ. Carol., 38 (1997), 603–613 | MR | Zbl

[26] B. M. Vernikov, “Completely regular semigroup varieties whose free objects have weakly permutable fully invariant congruences”, Semigroup Forum, 68 (2004), 154–158 | DOI | MR | Zbl

[27] B. M. Vernikov, “Semigroup varieties with $1{.}5$-permut able fully invariant congruences on their free objects”, Acta Appl. Math., 85 (2005), 313–318 | DOI | MR | Zbl

[28] B. M. Vernikov, M. V. Volkov, “Permutability of fully invariant congruences on relatively free semigroups”, Acta Sci. Math. (Szeged), 63 (1997), 437–461 | MR | Zbl

[29] B. M. Vernikov, M.V. Volkov, “Commuting fully invariant congruences on free semigroups”, Contrib. General Algebra, 12 (2000), 391–417 | MR | Zbl

[30] M. V. Volkov, “Semigroup varieties with commuting fully invariant congruences on free objects”, Contemp. Math., 131, no. 3, 1992, 295–316 | DOI | MR | Zbl

[31] M. V. Volkov, “Modular elements of the lattice of semigroup varieties”, Contrib. General Algebra, 16 (2005), 275–288 | MR | Zbl

[32] M. V. Volkov, T. A. Ershova, “The lattice of varieties of semigroups with completely regular square”, Monash Conf. on Semigroup Theory in Honour of G. B. Preston, World Scientific, Singapore, 1991, 306–322 | MR | Zbl