Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SEMR_2014_11_a14, author = {A. I. Stukachev}, title = {On quasiregular structures with computable signatures}, journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a}, pages = {444--450}, publisher = {mathdoc}, volume = {11}, year = {2014}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/SEMR_2014_11_a14/} }
A. I. Stukachev. On quasiregular structures with computable signatures. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 11 (2014), pp. 444-450. http://geodesic.mathdoc.fr/item/SEMR_2014_11_a14/
[1] J. Barwise, Admissible Sets and Strucrures, Springer-Velag, Berlin, 1975 | MR | Zbl
[2] Yu. L. Ershov, Opredelimost i vychislimost, Nauchnaya kniga, Novosibirsk, 1996 | MR | Zbl
[3] A. I. Stukachev, “Uniformization property in hereditary finite superstructures”, Sib. Adv. Math., 7 (1997), 123–131 | MR
[4] A. I. Stukachev, “Effective model theory: an approach via $\Sigma$-definability”, Lect. Notes in Logic, 41, 2013, 164–197
[5] V. Baleva, “The jump operation for structure degrees”, Arch. Math. Logic, 45 (2006), 249–265 | DOI | MR | Zbl
[6] A. I. Stukachev, “Teorema ob obraschenii skachka dlya polureshetok $\Sigma$-stepenei”, Sibirskie elektronnye matematicheskie izvestiya, 6 (2009), 182–190 | MR
[7] A. I. Stukachev, “A Jump Inversion Theorem for the semilattices of $\Sigma$-degrees”, Sib. Adv. Math., 20 (2010), 68–74 | DOI | MR
[8] A. I. Stukachev, “O svoistvakh $s\Sigma$-svodimosti”, Algebra i logika (to appear)
[9] A. J. Wilkie, “Model completeness results for expansions of the ordered field of real numbers by restricted Pfaffian functions and the exponential function”, J. Amer. Math. Soc., 9 (1996), 1051–1094 | DOI | MR | Zbl
[10] A. J. Macintyre, A. J. Wilkie, “On the decidability of the real exponential field”, Kreiseliana, About and Around Georg Kreisel, A. K. Peters, 1996, 441–467 | MR | Zbl