On quasiregular structures with computable signatures
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 11 (2014), pp. 444-450.

Voir la notice de l'article provenant de la source Math-Net.Ru

We extend the notion of HF-superstructure from the case of structures with finite signatures to the case of structures with computable signatures. It is shown that such expansions preserve some known properties of HF-superstructures. Namely, we prove that the property of quasiregularity of a structure is sufficient for qausiresolvability of the corresponding HF-superstructure.
Keywords: computability, computable structures, admissible sets, HF-superstructures.
@article{SEMR_2014_11_a14,
     author = {A. I. Stukachev},
     title = {On quasiregular structures with computable signatures},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {444--450},
     publisher = {mathdoc},
     volume = {11},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2014_11_a14/}
}
TY  - JOUR
AU  - A. I. Stukachev
TI  - On quasiregular structures with computable signatures
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2014
SP  - 444
EP  - 450
VL  - 11
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2014_11_a14/
LA  - ru
ID  - SEMR_2014_11_a14
ER  - 
%0 Journal Article
%A A. I. Stukachev
%T On quasiregular structures with computable signatures
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2014
%P 444-450
%V 11
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2014_11_a14/
%G ru
%F SEMR_2014_11_a14
A. I. Stukachev. On quasiregular structures with computable signatures. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 11 (2014), pp. 444-450. http://geodesic.mathdoc.fr/item/SEMR_2014_11_a14/

[1] J. Barwise, Admissible Sets and Strucrures, Springer-Velag, Berlin, 1975 | MR | Zbl

[2] Yu. L. Ershov, Opredelimost i vychislimost, Nauchnaya kniga, Novosibirsk, 1996 | MR | Zbl

[3] A. I. Stukachev, “Uniformization property in hereditary finite superstructures”, Sib. Adv. Math., 7 (1997), 123–131 | MR

[4] A. I. Stukachev, “Effective model theory: an approach via $\Sigma$-definability”, Lect. Notes in Logic, 41, 2013, 164–197

[5] V. Baleva, “The jump operation for structure degrees”, Arch. Math. Logic, 45 (2006), 249–265 | DOI | MR | Zbl

[6] A. I. Stukachev, “Teorema ob obraschenii skachka dlya polureshetok $\Sigma$-stepenei”, Sibirskie elektronnye matematicheskie izvestiya, 6 (2009), 182–190 | MR

[7] A. I. Stukachev, “A Jump Inversion Theorem for the semilattices of $\Sigma$-degrees”, Sib. Adv. Math., 20 (2010), 68–74 | DOI | MR

[8] A. I. Stukachev, “O svoistvakh $s\Sigma$-svodimosti”, Algebra i logika (to appear)

[9] A. J. Wilkie, “Model completeness results for expansions of the ordered field of real numbers by restricted Pfaffian functions and the exponential function”, J. Amer. Math. Soc., 9 (1996), 1051–1094 | DOI | MR | Zbl

[10] A. J. Macintyre, A. J. Wilkie, “On the decidability of the real exponential field”, Kreiseliana, About and Around Georg Kreisel, A. K. Peters, 1996, 441–467 | MR | Zbl