Algebras of distributions for isolating formulas of a complete theory
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 11 (2014), pp. 380-407.

Voir la notice de l'article provenant de la source Math-Net.Ru

We define a class of algebras describing links of binary isolating formulas on a set of realizations for a family of $1$-types of a complete theory. We prove that a set of labels for binary isolating formulas on a set of realizations for a $1$-type $p$ forms a groupoid of a special form if there is an atomic model over a realization of $p$. We describe the class of these groupoids and consider features of these groupoids in a general case and for special theories. A description of the class of partial groupoids relative to families of $1$-types is given.
Keywords: type, complete theory, groupoid of binary isolating formulas, deterministic structure.
Mots-clés : join of groupoids
@article{SEMR_2014_11_a11,
     author = {I. V. Shulepov and S. V. Sudoplatov},
     title = {Algebras of distributions for isolating formulas of a complete theory},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {380--407},
     publisher = {mathdoc},
     volume = {11},
     year = {2014},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2014_11_a11/}
}
TY  - JOUR
AU  - I. V. Shulepov
AU  - S. V. Sudoplatov
TI  - Algebras of distributions for isolating formulas of a complete theory
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2014
SP  - 380
EP  - 407
VL  - 11
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2014_11_a11/
LA  - en
ID  - SEMR_2014_11_a11
ER  - 
%0 Journal Article
%A I. V. Shulepov
%A S. V. Sudoplatov
%T Algebras of distributions for isolating formulas of a complete theory
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2014
%P 380-407
%V 11
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2014_11_a11/
%G en
%F SEMR_2014_11_a11
I. V. Shulepov; S. V. Sudoplatov. Algebras of distributions for isolating formulas of a complete theory. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 11 (2014), pp. 380-407. http://geodesic.mathdoc.fr/item/SEMR_2014_11_a11/

[1] B. S. Baizhanov, S. V. Sudoplatov, V. V. Verbovskiy, “Conditions for non-symmetric relations of semi-isolation”, Siberian Electronic Math. Reports, 9 (2012), 161–184 | MR

[2] E. Casanovas, The number of countable models, preprint, 2012

[3] C. C. Chang, H. J. Keisler, Model theory, Elsevier, Amsterdam, 1990 | MR

[4] A. H. Clifford, G. B. Preston, The Algebraic Theory of Semigroups, v. 1, American Mathematical Society, Providence, 1961 | MR

[5] A. H. Clifford, G. B. Preston, The Algebraic Theory of Semigroups, v. 2, American Mathematical Society, Providence, 1967 | MR | Zbl

[6] Yu. L. Ershov, E. A. Palyutin, Mathematical logic, Mir, M.1990, Moscow, 1990 | MR

[7] O. V. Mel'nikov and others, General algebra, v. 1, ed. L. A. Skornyakov, Nauka, M., 1990 (in Russian) | MR

[8] V. A. Artamonov and others, General algebra, v. 2, ed. L. A. Skornyakov, Nauka, M., 1991 (in Russian) | MR

[9] F. Harary, Graph theory, Addison-Wesley, Reading, Massachusetts, 1969 | MR | Zbl

[10] R. Hirsch, I. Hodkinson, Relation algebras by games, Elsevier, Amsterdam, 2002 | MR

[11] W. Hodges, Model theory, Cambridge University Press, 1993 | MR | Zbl

[12] B. Kim, “On the number of countable models of a countable supersimple theory”, J. London Math. Soc., 60:3 (1999), 641–645 | DOI | MR | Zbl

[13] E. S. Lyapin, Semigroups, American Mathematical Society, Providence, 1974 | MR | Zbl

[14] R. D. Maddux, Relation algebras, Elsevier, Amsterdam, 2006 | MR | Zbl

[15] A. Pillay, “Countable models of stable theories”, Proc. Amer. Math. Soc., 89:4 (1983), 666–672 | DOI | MR | Zbl

[16] A. Pillay, A note on one-based theories, preprint, 1989

[17] S. Shelah, Classification theory and the number of non-isomorphic models, North-Holland, Amsterdam, 1990 | MR | Zbl

[18] I. V. Shulepov, “Quotients of sequences by sets of word identities and limit models”, Collection of papers, Algebra and Model Theory, 7, eds. A. G. Pinus, K. N. Ponomaryov, S. V. Sudoplatov, NSTU, Novosibirsk, 2009, 120–130 (in Russian) | Zbl

[19] I. V. Shulepov, “On predicate similarity of limit models”, Computability and Models, Proceedings of International Conference, Collection of papers, ed. D. Serikbayev, East Kazakhstan State Technical University, Ust'-Kamenogorsk, 2010, 136–138 (in Russian)

[20] I. V. Shulepov, “Predicate similarity of limit models with identifications of signature symbols”, Collection of papers, Algebra and Model Theory, 8, eds. A. G. Pinus, K. N. Ponomaryov, S. V. Sudoplatov, E. I. Timoshenko, NSTU, Novosibirsk, 2011, 132–137 (in Russian)

[21] S. V. Sudoplatov, “On powerful types in small theories”, Siberian Math. J., 31:4 (1990), 629–638 | DOI | MR | Zbl

[22] S. V. Sudoplatov, “Type reduction and powerful types”, Siberian Math. J., 33:1 (1992), 125–133 | DOI | MR | Zbl

[23] S. V. Sudoplatov, “Group polygonometries and related algebraic systems”, Contributions to General Algebra 11, Proc. of the Olomouc Workshop'98 on General Algebra, Verlag Johannes Heyn, Klagenfurt, 1999, 191–210 | MR | Zbl

[24] S. V. Sudoplatov, “Complete theories with finitely many countable models, I”, Algebra and Logic, 43 (2004), 62–69 | DOI | MR | Zbl

[25] S. V. Sudoplatov, “Complete theories with finitely many countable models, II”, Algebra and Logic, 45:3 (2006), 180–200 | DOI | MR | Zbl

[26] S. V. Sudoplatov, “Powerful digraphs”, Siberian Math. J., 48:1 (2007), 165–171 | DOI | MR | Zbl

[27] S. V. Sudoplatov, “On the number of countable models of complete theories with finite Rudin–Keisler preorders”, Siberian Math. J., 48:2 (2007), 334–338 | DOI | MR | Zbl

[28] S. V. Sudoplatov, “Syntactic approach to constructions of generic models”, Algebra and Logic, 46:2 (2007), 134–146 | DOI | MR | Zbl

[29] http://www.math.nsc.ru/s̃udoplatov/lachlan_eng_03_09_2008.pdf

[30] S. V. Sudoplatov, “Hypergraphs of prime models and distributions of countable models of small theories”, J. Math. Sciences, 169 (2010), 680–695 | DOI | MR | Zbl

[31] S. V. Sudoplatov, “On limit models over types in the class of $\omega$-stable theories”, Reports of Irkutsk State University. Series “Mathematics”, 3 (2010), 114–120 (in Russian) | Zbl

[32] S. V. Sudoplatov, Group polygonometries, NSTU, Novosibirsk, 2011; 2013 (in Russian)

[33] P. Tanović, “Theories with constants and three countable models”, Archive for Math. Logic, 46 (2007), 517–527 | DOI | MR | Zbl

[34] P. Tanović, “Asymmetric ${\rm RK}$-minimal types”, Archive for Math. Logic, 49 (2010), 367–377 | DOI | MR | Zbl