Algebras of distributions for isolating formulas of a complete theory
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 11 (2014), pp. 380-407
Voir la notice de l'article provenant de la source Math-Net.Ru
We define a class of algebras describing links of binary isolating formulas on a set of realizations for a family of $1$-types of a complete theory. We prove that a set of labels for binary isolating formulas on a set of realizations for a $1$-type $p$ forms a groupoid of a special form if there is an atomic model over a realization of $p$. We describe the class of these groupoids and consider features of these groupoids in a general case and for special theories. A description of the class of partial groupoids relative to families of $1$-types is given.
Keywords:
type, complete theory, groupoid of binary isolating formulas, deterministic structure.
Mots-clés : join of groupoids
Mots-clés : join of groupoids
@article{SEMR_2014_11_a11,
author = {I. V. Shulepov and S. V. Sudoplatov},
title = {Algebras of distributions for isolating formulas of a complete theory},
journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
pages = {380--407},
publisher = {mathdoc},
volume = {11},
year = {2014},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SEMR_2014_11_a11/}
}
TY - JOUR AU - I. V. Shulepov AU - S. V. Sudoplatov TI - Algebras of distributions for isolating formulas of a complete theory JO - Sibirskie èlektronnye matematičeskie izvestiâ PY - 2014 SP - 380 EP - 407 VL - 11 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SEMR_2014_11_a11/ LA - en ID - SEMR_2014_11_a11 ER -
I. V. Shulepov; S. V. Sudoplatov. Algebras of distributions for isolating formulas of a complete theory. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 11 (2014), pp. 380-407. http://geodesic.mathdoc.fr/item/SEMR_2014_11_a11/