Algebras of distributions for isolating formulas of a complete theory
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 11 (2014), pp. 380-407

Voir la notice de l'article provenant de la source Math-Net.Ru

We define a class of algebras describing links of binary isolating formulas on a set of realizations for a family of $1$-types of a complete theory. We prove that a set of labels for binary isolating formulas on a set of realizations for a $1$-type $p$ forms a groupoid of a special form if there is an atomic model over a realization of $p$. We describe the class of these groupoids and consider features of these groupoids in a general case and for special theories. A description of the class of partial groupoids relative to families of $1$-types is given.
Keywords: type, complete theory, groupoid of binary isolating formulas, deterministic structure.
Mots-clés : join of groupoids
@article{SEMR_2014_11_a11,
     author = {I. V. Shulepov and S. V. Sudoplatov},
     title = {Algebras of distributions for isolating formulas of a complete theory},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {380--407},
     publisher = {mathdoc},
     volume = {11},
     year = {2014},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2014_11_a11/}
}
TY  - JOUR
AU  - I. V. Shulepov
AU  - S. V. Sudoplatov
TI  - Algebras of distributions for isolating formulas of a complete theory
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2014
SP  - 380
EP  - 407
VL  - 11
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2014_11_a11/
LA  - en
ID  - SEMR_2014_11_a11
ER  - 
%0 Journal Article
%A I. V. Shulepov
%A S. V. Sudoplatov
%T Algebras of distributions for isolating formulas of a complete theory
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2014
%P 380-407
%V 11
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2014_11_a11/
%G en
%F SEMR_2014_11_a11
I. V. Shulepov; S. V. Sudoplatov. Algebras of distributions for isolating formulas of a complete theory. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 11 (2014), pp. 380-407. http://geodesic.mathdoc.fr/item/SEMR_2014_11_a11/