Flag-transitivity criterion for projective linear group defined over a subring of a base skew field
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 11 (2014), pp. 64-69.

Voir la notice de l'article provenant de la source Math-Net.Ru

It is proved that a projective linear group over a subring of a skew field is flag-transitive if and only if the subring is a Bezout domain and its (left and right) fraction sets coincide with the skew field. This result gives answer for Problem 11.70(b) from Kourovka Notebook.
Keywords: flag-transitivity, projective linear group, projective space.
@article{SEMR_2014_11_a1,
     author = {S. A. Zyubin},
     title = {Flag-transitivity criterion for projective linear group defined over a subring of a base skew field},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {64--69},
     publisher = {mathdoc},
     volume = {11},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2014_11_a1/}
}
TY  - JOUR
AU  - S. A. Zyubin
TI  - Flag-transitivity criterion for projective linear group defined over a subring of a base skew field
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2014
SP  - 64
EP  - 69
VL  - 11
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2014_11_a1/
LA  - ru
ID  - SEMR_2014_11_a1
ER  - 
%0 Journal Article
%A S. A. Zyubin
%T Flag-transitivity criterion for projective linear group defined over a subring of a base skew field
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2014
%P 64-69
%V 11
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2014_11_a1/
%G ru
%F SEMR_2014_11_a1
S. A. Zyubin. Flag-transitivity criterion for projective linear group defined over a subring of a base skew field. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 11 (2014), pp. 64-69. http://geodesic.mathdoc.fr/item/SEMR_2014_11_a1/

[1] Artin E., Geometric Algebra, Interscience Publ. Inc., New York, 1967, x+214 pp. ; Artin E., Geometricheskaya algebra, Nauka, M., 1969, 284 pp. | MR | MR | Zbl

[2] Beutelspacher A., Rosenbaum U., Projective Geometry: From Foundations to Applications, Cambridge Uni. Press, 1998, x+258 pp. | MR | Zbl

[3] Higman D. G., “Flag-transitive collineation groups of finite projective spaces”, Ill. J. Math., 6 (1962), 434–446 | MR | Zbl

[4] Seitz G., “Flag-transitive subgroups of Chevalley groups”, Ann. Math. (2), 97:1 (1973), 27–56 | DOI | MR | Zbl

[5] Stenström B., An Introduction to Methods of Ring Theory, Berlin–Heidelberg–New York, 1975 | MR

[6] Zyubin S., “Groups acting transitively and flag-transitively on projective spaces”, Mezhd. algebr. konf., SPb otd. MI RAN, Sankt-Peterburg, 2007, 180–181

[7] Zyubin S. A., “Lineinye gruppy, flag-tranzitivnye na proektivnykh prostranstvakh”, Klassy grupp, algebr i ikh prilozheniya, Mezhd. alg. konf., tez. dokl. (Gomel, 2007), 75–76

[8] Zyubin S. A., “Flag-tranzitivnost lineinykh grupp, opredelennykh nad podkoltsom tela”, Maltsevskie chteniya, Tezisy mezhdun. konf. (Novosibirsk, 2009), 56

[9] Kourovskaya tetrad (nereshennye voprosy teorii grupp), 17-e izd., IM SO RAN, Novosibirsk, 2010