Negative equivalence over the minimal logic and interpolation
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 11 (2014), pp. 1-17.

Voir la notice de l'article provenant de la source Math-Net.Ru

It is proved that extensions of the minimal Johansson logic J are negatively equivalent if and only if their centers are equal. It is proved in [1] that the logics with the weak interpolation property WIP are divided into eight intervals with etalon logics on the top. Therefore a logic possesses WIP iff it is negatively equivalent to one of the eight etalon logics. An axiomatization and a semantic characterization are found for WIP-minimal logics, which are the least elements of all eight intervals of logics with WIP. The Craig interpolation property CIP is stated for the most of WIP-minimal logics.
Keywords: minimal logic, negative equivalence, semantic completeness
Mots-clés : interpolation.
@article{SEMR_2014_11_a0,
     author = {L. L. Maksimova},
     title = {Negative equivalence over the minimal logic and interpolation},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {1--17},
     publisher = {mathdoc},
     volume = {11},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2014_11_a0/}
}
TY  - JOUR
AU  - L. L. Maksimova
TI  - Negative equivalence over the minimal logic and interpolation
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2014
SP  - 1
EP  - 17
VL  - 11
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2014_11_a0/
LA  - ru
ID  - SEMR_2014_11_a0
ER  - 
%0 Journal Article
%A L. L. Maksimova
%T Negative equivalence over the minimal logic and interpolation
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2014
%P 1-17
%V 11
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2014_11_a0/
%G ru
%F SEMR_2014_11_a0
L. L. Maksimova. Negative equivalence over the minimal logic and interpolation. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 11 (2014), pp. 1-17. http://geodesic.mathdoc.fr/item/SEMR_2014_11_a0/

[1] L. L. Maksimova, “Razreshimost slabogo interpolyatsionnogo svoistva nad minimalnoi logikoi”, Algebra i logika, 50:2 (2011), 152–188 | MR | Zbl

[2] I. Johansson, “Der Minimalkalkül, ein reduzierter intuitionistic {F}ormalismus”, Compositio Mathematica, 4 (1937), 119–136 | MR

[3] L. L. Maksimova, “Razreshimost interpolyatsionnogo svoistva Kreiga v stroinykh J-logikakh”, Sibirskii matematicheskii zhurnal, 53:5 (2012), 1048–1064 | MR | Zbl

[4] L. L. Maksimova, “Proektivnoe svoistvo Beta v stroinykh logikakh”, Algebra i logika, 52:2 (2013), 172–202 | MR | Zbl

[5] S. P. Odintsov, “Negative equivalence of extensions of minimal logic”, Studia Logica, 78 (2004), 417–442 | DOI | MR | Zbl

[6] L. Maksimova, “Interpolation and Definability over the logic Gl”, Studia Logica, 99:1–3 (2011), 249–267 | DOI | MR | Zbl

[7] H. Rasiowa, An algebraic approach to non-classical logic, North-Holland, Amsterdam, 1974 | MR | Zbl

[8] L. L. Maksimova, “Teorema Kreiga v superintuitsionistskikh logikakh i amalgamiruemye mnogoobraziya psevdobulevykh algebr”, Algebra i logika, 16:6 (1977), 643–681 | MR | Zbl

[9] D. M. Gabbay, L. Maksimova, Interpolation and Definability: Modal and Intuitionistic Logics, Clarendon Press, Oxford, 2005 | MR | Zbl

[10] A. I. Maltsev, Algebraicheskie sistemy, Nauka, M., 1970 | MR

[11] L. L. Maksimova, “Interpolyatsiya i opredelimost v rasshireniyakh minimalnoi logiki”, Algebra i logika, 44:6 (2005), 726–750 | MR | Zbl

[12] L. Maksimova, “Interpolation and joint consistency”, We Will Show Them!, Essays in Honour of Dov Gabbay, v. 2, King's College Publications, eds. S. Artemov, H. Barringer, A. d'Avila Garcez, L. Lamb, J. Woods, London, 2005, 293–305 | Zbl

[13] L. L. Maksimova, “Neyavnaya opredelimost v pozitivnykh logikakh”, Algebra i logika, 42:1 (2003), 65–93 | MR | Zbl

[14] K. Segerberg, “Propositional logics related to Heyting's and Johansson's”, Theoria, 34 (1968), 26–61 | DOI | MR

[15] L. L. Maksimova, “Metod dokazatelstva interpolyatsii v paraneprotivorechivykh rasshireniyakh minimalnoi logiki”, Algebra i logika, 46:5 (2007), 627–648 | MR | Zbl

[16] K. Schütte, “Der {I}nterpolationsatz der intuitionistischen {P}rädikatenlogik”, Mathematische Annalen, 148 (1962), 192–200 | DOI | MR | Zbl