Negative equivalence over the minimal logic and interpolation
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 11 (2014), pp. 1-17

Voir la notice de l'article provenant de la source Math-Net.Ru

It is proved that extensions of the minimal Johansson logic J are negatively equivalent if and only if their centers are equal. It is proved in [1] that the logics with the weak interpolation property WIP are divided into eight intervals with etalon logics on the top. Therefore a logic possesses WIP iff it is negatively equivalent to one of the eight etalon logics. An axiomatization and a semantic characterization are found for WIP-minimal logics, which are the least elements of all eight intervals of logics with WIP. The Craig interpolation property CIP is stated for the most of WIP-minimal logics.
Keywords: minimal logic, negative equivalence, semantic completeness
Mots-clés : interpolation.
@article{SEMR_2014_11_a0,
     author = {L. L. Maksimova},
     title = {Negative equivalence over the minimal logic and interpolation},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {1--17},
     publisher = {mathdoc},
     volume = {11},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2014_11_a0/}
}
TY  - JOUR
AU  - L. L. Maksimova
TI  - Negative equivalence over the minimal logic and interpolation
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2014
SP  - 1
EP  - 17
VL  - 11
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2014_11_a0/
LA  - ru
ID  - SEMR_2014_11_a0
ER  - 
%0 Journal Article
%A L. L. Maksimova
%T Negative equivalence over the minimal logic and interpolation
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2014
%P 1-17
%V 11
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2014_11_a0/
%G ru
%F SEMR_2014_11_a0
L. L. Maksimova. Negative equivalence over the minimal logic and interpolation. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 11 (2014), pp. 1-17. http://geodesic.mathdoc.fr/item/SEMR_2014_11_a0/