Negative equivalence over the minimal logic and interpolation
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 11 (2014), pp. 1-17
Voir la notice de l'article provenant de la source Math-Net.Ru
It is proved that extensions of the minimal Johansson logic J are negatively equivalent if and only if their centers are equal. It is proved in [1] that the logics with the weak interpolation property WIP are divided into eight intervals with etalon logics on the top. Therefore a logic possesses WIP iff it is negatively equivalent to one of the eight etalon logics. An axiomatization and a semantic characterization are found for WIP-minimal logics, which are the least elements of all eight intervals of logics with WIP. The Craig interpolation property CIP is stated for the most of WIP-minimal logics.
Keywords:
minimal logic, negative equivalence, semantic completeness
Mots-clés : interpolation.
Mots-clés : interpolation.
@article{SEMR_2014_11_a0,
author = {L. L. Maksimova},
title = {Negative equivalence over the minimal logic and interpolation},
journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
pages = {1--17},
publisher = {mathdoc},
volume = {11},
year = {2014},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/SEMR_2014_11_a0/}
}
L. L. Maksimova. Negative equivalence over the minimal logic and interpolation. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 11 (2014), pp. 1-17. http://geodesic.mathdoc.fr/item/SEMR_2014_11_a0/