Periodic groups saturated by direct products of the Suzuki's group for elementary abelian 2-groups
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 10 (2013), pp. 408-413.

Voir la notice de l'article provenant de la source Math-Net.Ru

It is proved that a periodic groups saturated by the set of groups $\mathfrak{M} = \{P\times V_n \mid n \in N \}$, where $V_n$ is an elementary abelian 2-group of order $2^{n}$, and $P=Sz(q)$, where $q=2^{2m+1}$, $m$ is a fixed natural number, is isomorphic to $P\times V$, where $V$ is an elementary abelian 2-group.
Keywords: periodic group
Mots-clés : saturation.
@article{SEMR_2013_10_a9,
     author = {A. A. Duzh},
     title = {Periodic groups saturated by direct products of the {Suzuki's} group for elementary abelian 2-groups},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {408--413},
     publisher = {mathdoc},
     volume = {10},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2013_10_a9/}
}
TY  - JOUR
AU  - A. A. Duzh
TI  - Periodic groups saturated by direct products of the Suzuki's group for elementary abelian 2-groups
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2013
SP  - 408
EP  - 413
VL  - 10
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2013_10_a9/
LA  - ru
ID  - SEMR_2013_10_a9
ER  - 
%0 Journal Article
%A A. A. Duzh
%T Periodic groups saturated by direct products of the Suzuki's group for elementary abelian 2-groups
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2013
%P 408-413
%V 10
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2013_10_a9/
%G ru
%F SEMR_2013_10_a9
A. A. Duzh. Periodic groups saturated by direct products of the Suzuki's group for elementary abelian 2-groups. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 10 (2013), pp. 408-413. http://geodesic.mathdoc.fr/item/SEMR_2013_10_a9/

[1] M. Suzuki, “A new type of simple groups of finite order”, Proc. Nat. Acad. Sci. U.S.A., 46 (1960), 868–870 | MR | Zbl

[2] A. A. Duzh, A. A. Shlepkin, “O periodicheskoi gruppe Shunkova, nasyschennoi pryamymi proizvedeniyami konechnykh elementarnykh abelevykh 2-grupp i $L_2(2^n)$”, Trudy IMM UrO RAN, 17:4 (2011), 83–87

[3] D. V. Lytkina, “Periodicheskie gruppy, nasyschennye pryamymi proizvedeniyami konechnykh prostykh grupp”, Sib. mat. zhurnal, 52:2 (2011), 340–349 | MR | Zbl

[4] D. V. Lytkina, “Periodicheskie gruppy, nasyschennye pryamymi proizvedeniyami konechnykh prostykh grupp, II”, Sib. mat. zhurnal, 52:5 (2011), 1096–1112 | MR | Zbl

[5] D. V. Lytkina, “Stroenie gruppy, poryadki elementov kotoroi ne prevoskhodyat chisla 4”, Matem. sist., 4, KrasGAU, Krasnoyarsk, 2005, 602–617

[6] D. V. Lytkina, V. D. Mazurov, “O gruppakh s zadannymi svoistvami konechnykh podgrupp, porozhdennykh parami 2-elementov”, Sib. matem. zhurn., 54:1 (2013)

[7] D. V. Lytkina, K. A. Filippov, “O periodicheskikh gruppakh, nasyschennykh $L_2(q)$ i ee tsentralnymi rasshireniyami”, Matem. sist., 5, KrasGAU, Krasnoyarsk, 2006, 35–45 | MR

[8] I. N. Sanov, “Resheniya problem Bernsaida dlya perioda 4”, Uchen. zapiski LGU. Ser. matem., 1940, no. 10, 166–170 | MR

[9] K. A. Filippov, Gruppy, nasyschennye konechnymi neabelevymi gruppami i ikh rasshireniyami, Dis. ... kand. fiz.-mat. nauk, Krasnoyarsk, 2006

[10] A. K. Shlepkin, A. G. Rubashkin, “O gruppakh, nasyschennykh konechnym mnozhestvom grupp”, Sib. matem. zhurn., 45:6 (2004), 1397–1400 | MR | Zbl

[11] A. K. Shlepkin, “Sopryazhenno biprimitivno konechnye gruppy, soderzhaschie konechnye nerazreshimye podgruppy”, Sb. tez. 3-i mezhdunar. konf. po algebre, Krasnoyarsk, 1993, 363

[12] V. P. Shunkov, “O periodicheskikh gruppakh s pochti regulyarnoi involyutsiei”, Algebra i logika, 11:4 (1972), 470–494 | Zbl