A characterization of the simple sporadic groups
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 10 (2013), pp. 200-204

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $G$ be a finite group, $n_{p}(G)$ be the number of Sylow $p$–subgroup of $G$ and $t(2, G)$ be the maximal number of vertices in cocliques of the prime graph of $G$ containing 2. In this paper we prove that if $G$ is a centerless group with $t(2,G)\geq 2$ and $n_{p}(G)$=$n_{p}(S)$ for every prime $p\in \pi (G)$, where $S$ is the sporadic simple groups, then $S\leq G\leq $Aut$(S)$.
Keywords: Finite Group, Sylow subgroup.
Mots-clés : simple group
@article{SEMR_2013_10_a7,
     author = {A. K. Asboei},
     title = {A characterization of the simple sporadic groups},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {200--204},
     publisher = {mathdoc},
     volume = {10},
     year = {2013},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2013_10_a7/}
}
TY  - JOUR
AU  - A. K. Asboei
TI  - A characterization of the simple sporadic groups
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2013
SP  - 200
EP  - 204
VL  - 10
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2013_10_a7/
LA  - en
ID  - SEMR_2013_10_a7
ER  - 
%0 Journal Article
%A A. K. Asboei
%T A characterization of the simple sporadic groups
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2013
%P 200-204
%V 10
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2013_10_a7/
%G en
%F SEMR_2013_10_a7
A. K. Asboei. A characterization of the simple sporadic groups. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 10 (2013), pp. 200-204. http://geodesic.mathdoc.fr/item/SEMR_2013_10_a7/