A characterization of the simple sporadic groups
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 10 (2013), pp. 200-204
Voir la notice de l'article provenant de la source Math-Net.Ru
Let $G$ be a finite group, $n_{p}(G)$ be the number of Sylow $p$–subgroup of $G$ and $t(2, G)$ be the maximal number of vertices in cocliques of the prime graph of $G$ containing 2. In this paper we prove that if $G$ is a centerless group with $t(2,G)\geq 2$ and $n_{p}(G)$=$n_{p}(S)$ for every prime $p\in \pi (G)$, where $S$ is the sporadic simple groups, then $S\leq G\leq $Aut$(S)$.
Keywords:
Finite Group, Sylow subgroup.
Mots-clés : simple group
Mots-clés : simple group
@article{SEMR_2013_10_a7,
author = {A. K. Asboei},
title = {A characterization of the simple sporadic groups},
journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
pages = {200--204},
publisher = {mathdoc},
volume = {10},
year = {2013},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SEMR_2013_10_a7/}
}
A. K. Asboei. A characterization of the simple sporadic groups. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 10 (2013), pp. 200-204. http://geodesic.mathdoc.fr/item/SEMR_2013_10_a7/