Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SEMR_2013_10_a60, author = {V. V. Aseev and D. G. Kuzin}, title = {Normal families of light mappings of the sphere onto itself}, journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a}, pages = {733--742}, publisher = {mathdoc}, volume = {10}, year = {2013}, language = {en}, url = {http://geodesic.mathdoc.fr/item/SEMR_2013_10_a60/} }
V. V. Aseev; D. G. Kuzin. Normal families of light mappings of the sphere onto itself. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 10 (2013), pp. 733-742. http://geodesic.mathdoc.fr/item/SEMR_2013_10_a60/
[1] Belinskii P. P., General properties of quasiconformal mappings, Nauka, Novosibirsk, 1974 (in Russian) | MR | Zbl
[2] Reshetnyak Yu. G., Space mappings of bounded distortion, Translations of Mathematical Monographs, 73, American Mathematical Society, Providence, RI, 1989 | MR | Zbl
[3] Vuorinen M., “Conformal geometry and quasiregular mappings”, Lect. Notes. Math., 1319, 1988, 1–209 | DOI | MR | Zbl
[4] Naimpally S. A., “Graph topology for function spaces”, Trans. Amer. Math. Soc., 123 (1966), 267–272 | DOI | MR | Zbl
[5] Aseev V. V., “Quasisymmetric embeddings”, J. Math. Sci., 108:3 (2002), 375–410 | DOI | MR | Zbl
[6] Whyburn G. T., “Analitic topology”, Colloq. Publ., 28, Amer. Math. Soc., 1942, 280 pp. | MR | Zbl
[7] Kuratowski K., Topology, v. I, Academic Press/Polish Scientific Publishers, New York–London–Warszawa, 1966 | MR | Zbl
[8] Stoilov S., Theory of functions of a complex variable, v. II, IL, M., 1962 (in Russian)
[9] Goluzin G. M., Geometric theory of functions of a complex variable, Amer. Math. Soc., 1969 | MR | Zbl
[10] Vä isä lä J., “Lectures on $n$-dimensional quasiconformal mappings”, Lect. Notes. Math., 229, 1971, 1–144 | DOI | MR