Normal families of light mappings of the sphere onto itself
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 10 (2013), pp. 733-742

Voir la notice de l'article provenant de la source Math-Net.Ru

Considering the class ${\mathcal D}$ of all continuous light mappings of the Riemann sphere $\bar{\mathbf C}$ onto itself, we introduce the notion of ${\mathcal D}$-normal family and prove that every mapping $f$ from a given Möbius invariant and ${\mathcal D}$-normal family ${\mathcal F}\subset {\mathcal D}$ is a composition of a $K$-quasiconformal automorphism of $\bar{\mathbf C}$ with the mapping, realized by a meromorphic function on $\bar{\mathbf C}$, where a constant $K$ is common for all $f\in {\mathcal F}$.
Keywords: quasiconformal mapping, mapping of bounded distortion, quasimeromorphic mapping, normal family, Möbius mapping, Möbius invariant family, Stoilov theorem, light mapping, open mapping.
Mots-clés : graph convergence
@article{SEMR_2013_10_a60,
     author = {V. V. Aseev and D. G. Kuzin},
     title = {Normal families of light mappings of the sphere onto itself},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {733--742},
     publisher = {mathdoc},
     volume = {10},
     year = {2013},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2013_10_a60/}
}
TY  - JOUR
AU  - V. V. Aseev
AU  - D. G. Kuzin
TI  - Normal families of light mappings of the sphere onto itself
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2013
SP  - 733
EP  - 742
VL  - 10
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2013_10_a60/
LA  - en
ID  - SEMR_2013_10_a60
ER  - 
%0 Journal Article
%A V. V. Aseev
%A D. G. Kuzin
%T Normal families of light mappings of the sphere onto itself
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2013
%P 733-742
%V 10
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2013_10_a60/
%G en
%F SEMR_2013_10_a60
V. V. Aseev; D. G. Kuzin. Normal families of light mappings of the sphere onto itself. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 10 (2013), pp. 733-742. http://geodesic.mathdoc.fr/item/SEMR_2013_10_a60/