Normal families of light mappings of the sphere onto itself
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 10 (2013), pp. 733-742.

Voir la notice de l'article provenant de la source Math-Net.Ru

Considering the class ${\mathcal D}$ of all continuous light mappings of the Riemann sphere $\bar{\mathbf C}$ onto itself, we introduce the notion of ${\mathcal D}$-normal family and prove that every mapping $f$ from a given Möbius invariant and ${\mathcal D}$-normal family ${\mathcal F}\subset {\mathcal D}$ is a composition of a $K$-quasiconformal automorphism of $\bar{\mathbf C}$ with the mapping, realized by a meromorphic function on $\bar{\mathbf C}$, where a constant $K$ is common for all $f\in {\mathcal F}$.
Keywords: quasiconformal mapping, mapping of bounded distortion, quasimeromorphic mapping, normal family, Möbius mapping, Möbius invariant family, Stoilov theorem, light mapping, open mapping.
Mots-clés : graph convergence
@article{SEMR_2013_10_a60,
     author = {V. V. Aseev and D. G. Kuzin},
     title = {Normal families of light mappings of the sphere onto itself},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {733--742},
     publisher = {mathdoc},
     volume = {10},
     year = {2013},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2013_10_a60/}
}
TY  - JOUR
AU  - V. V. Aseev
AU  - D. G. Kuzin
TI  - Normal families of light mappings of the sphere onto itself
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2013
SP  - 733
EP  - 742
VL  - 10
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2013_10_a60/
LA  - en
ID  - SEMR_2013_10_a60
ER  - 
%0 Journal Article
%A V. V. Aseev
%A D. G. Kuzin
%T Normal families of light mappings of the sphere onto itself
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2013
%P 733-742
%V 10
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2013_10_a60/
%G en
%F SEMR_2013_10_a60
V. V. Aseev; D. G. Kuzin. Normal families of light mappings of the sphere onto itself. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 10 (2013), pp. 733-742. http://geodesic.mathdoc.fr/item/SEMR_2013_10_a60/

[1] Belinskii P. P., General properties of quasiconformal mappings, Nauka, Novosibirsk, 1974 (in Russian) | MR | Zbl

[2] Reshetnyak Yu. G., Space mappings of bounded distortion, Translations of Mathematical Monographs, 73, American Mathematical Society, Providence, RI, 1989 | MR | Zbl

[3] Vuorinen M., “Conformal geometry and quasiregular mappings”, Lect. Notes. Math., 1319, 1988, 1–209 | DOI | MR | Zbl

[4] Naimpally S. A., “Graph topology for function spaces”, Trans. Amer. Math. Soc., 123 (1966), 267–272 | DOI | MR | Zbl

[5] Aseev V. V., “Quasisymmetric embeddings”, J. Math. Sci., 108:3 (2002), 375–410 | DOI | MR | Zbl

[6] Whyburn G. T., “Analitic topology”, Colloq. Publ., 28, Amer. Math. Soc., 1942, 280 pp. | MR | Zbl

[7] Kuratowski K., Topology, v. I, Academic Press/Polish Scientific Publishers, New York–London–Warszawa, 1966 | MR | Zbl

[8] Stoilov S., Theory of functions of a complex variable, v. II, IL, M., 1962 (in Russian)

[9] Goluzin G. M., Geometric theory of functions of a complex variable, Amer. Math. Soc., 1969 | MR | Zbl

[10] Vä isä lä J., “Lectures on $n$-dimensional quasiconformal mappings”, Lect. Notes. Math., 229, 1971, 1–144 | DOI | MR