Euler quadrature rule for a function with a boundary layer component on a picewise uniform mesh
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 10 (2013), pp. 491-503.

Voir la notice de l'article provenant de la source Math-Net.Ru

Euler and Gregory quadrature rules for a function with a boundary layer component are investigated. The integrand corresponds to a solution of a singular perturbed problem. It is proved that Euler and Gregory quadrature rules on a mesh, dence in a boundary layer, have a fourth order of an accuracy uniformly in a boundary layer growth of the integrand. Results of numerical experiments are discussed.
Keywords: function, boundary layer, piecewise uniform mesh, uniform accuracy.
Mots-clés : Euler quadrature formula
@article{SEMR_2013_10_a56,
     author = {A. I. Zadorin and N. A. Zadorin},
     title = {Euler quadrature rule for a function with a boundary layer component on a picewise uniform mesh},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {491--503},
     publisher = {mathdoc},
     volume = {10},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2013_10_a56/}
}
TY  - JOUR
AU  - A. I. Zadorin
AU  - N. A. Zadorin
TI  - Euler quadrature rule for a function with a boundary layer component on a picewise uniform mesh
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2013
SP  - 491
EP  - 503
VL  - 10
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2013_10_a56/
LA  - ru
ID  - SEMR_2013_10_a56
ER  - 
%0 Journal Article
%A A. I. Zadorin
%A N. A. Zadorin
%T Euler quadrature rule for a function with a boundary layer component on a picewise uniform mesh
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2013
%P 491-503
%V 10
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2013_10_a56/
%G ru
%F SEMR_2013_10_a56
A. I. Zadorin; N. A. Zadorin. Euler quadrature rule for a function with a boundary layer component on a picewise uniform mesh. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 10 (2013), pp. 491-503. http://geodesic.mathdoc.fr/item/SEMR_2013_10_a56/

[1] I. S. Berezin, N. P. Zhidkov, Metody vychislenii, Nauka, M., 1966 | MR

[2] N. S. Bakhvalov, N. P. Zhidkov, G. M. Kobelkov, Chislennye metody, Nauka, M., 1987 | MR | Zbl

[3] A. I. Zadorin, “Metod interpolyatsii dlya zadachi s pogranichnym sloem”, Sibirskii zhurnal vychisl. matem., 10:3 (2007), 267–275

[4] A. I. Zadorin, N. A. Zadorin, “Splain-interpolyatsiya na ravnomernoi setke funktsii s pogransloinoi sostavlyayuschei”, Zh. vychisl. matem. i matem. fiz., 50:2 (2010), 221–233 | MR | Zbl

[5] A. I. Zadorin, N. A. Zadorin, “Kvadraturnye formuly dlya funktsii s pogransloinoi sostavlyayuschei”, Zh. vychisl. matem. i matem. fiz., 51:11 (2011), 1952–1962 | MR | Zbl

[6] N. A. Zadorin, “Interpolyatsionnye i kvadraturnye formuly dlya funktsii s pogransloinoi sostavlyayuschei na setke Shishkina”, Vestnik Omskogo universiteta, 4 (2012), 17–20

[7] G. I. Shishkin, Setochnye approksimatsii singulyarno vozmuschennykh ellipticheskikh i parabolicheskikh uravnenii, UrO RAN, Ekaterinburg, 1992

[8] J. J. H. Miller, E. O'Riordan, G. I. Shishkin, Fitted Numerical Methods for Singular Perturbation Problems: Error Estimates in the Maximum Norm for Linear Problems in One and Two Dimensions, Revised Edition, World Scientific Publishing, Singapore, 2012 | MR

[9] H. G. Roos, M. Stynes, L. Tobiska, Numerical Methods for Singularly Perturbed Differential Equations. Convection-Diffusion-Reaction and Flow Problems, Springer Series in Computational Mathematics, 24, Springer-Verlag, Berlin, 1996 | DOI | MR | Zbl