Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SEMR_2013_10_a56, author = {A. I. Zadorin and N. A. Zadorin}, title = {Euler quadrature rule for a function with a boundary layer component on a picewise uniform mesh}, journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a}, pages = {491--503}, publisher = {mathdoc}, volume = {10}, year = {2013}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/SEMR_2013_10_a56/} }
TY - JOUR AU - A. I. Zadorin AU - N. A. Zadorin TI - Euler quadrature rule for a function with a boundary layer component on a picewise uniform mesh JO - Sibirskie èlektronnye matematičeskie izvestiâ PY - 2013 SP - 491 EP - 503 VL - 10 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SEMR_2013_10_a56/ LA - ru ID - SEMR_2013_10_a56 ER -
%0 Journal Article %A A. I. Zadorin %A N. A. Zadorin %T Euler quadrature rule for a function with a boundary layer component on a picewise uniform mesh %J Sibirskie èlektronnye matematičeskie izvestiâ %D 2013 %P 491-503 %V 10 %I mathdoc %U http://geodesic.mathdoc.fr/item/SEMR_2013_10_a56/ %G ru %F SEMR_2013_10_a56
A. I. Zadorin; N. A. Zadorin. Euler quadrature rule for a function with a boundary layer component on a picewise uniform mesh. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 10 (2013), pp. 491-503. http://geodesic.mathdoc.fr/item/SEMR_2013_10_a56/
[1] I. S. Berezin, N. P. Zhidkov, Metody vychislenii, Nauka, M., 1966 | MR
[2] N. S. Bakhvalov, N. P. Zhidkov, G. M. Kobelkov, Chislennye metody, Nauka, M., 1987 | MR | Zbl
[3] A. I. Zadorin, “Metod interpolyatsii dlya zadachi s pogranichnym sloem”, Sibirskii zhurnal vychisl. matem., 10:3 (2007), 267–275
[4] A. I. Zadorin, N. A. Zadorin, “Splain-interpolyatsiya na ravnomernoi setke funktsii s pogransloinoi sostavlyayuschei”, Zh. vychisl. matem. i matem. fiz., 50:2 (2010), 221–233 | MR | Zbl
[5] A. I. Zadorin, N. A. Zadorin, “Kvadraturnye formuly dlya funktsii s pogransloinoi sostavlyayuschei”, Zh. vychisl. matem. i matem. fiz., 51:11 (2011), 1952–1962 | MR | Zbl
[6] N. A. Zadorin, “Interpolyatsionnye i kvadraturnye formuly dlya funktsii s pogransloinoi sostavlyayuschei na setke Shishkina”, Vestnik Omskogo universiteta, 4 (2012), 17–20
[7] G. I. Shishkin, Setochnye approksimatsii singulyarno vozmuschennykh ellipticheskikh i parabolicheskikh uravnenii, UrO RAN, Ekaterinburg, 1992
[8] J. J. H. Miller, E. O'Riordan, G. I. Shishkin, Fitted Numerical Methods for Singular Perturbation Problems: Error Estimates in the Maximum Norm for Linear Problems in One and Two Dimensions, Revised Edition, World Scientific Publishing, Singapore, 2012 | MR
[9] H. G. Roos, M. Stynes, L. Tobiska, Numerical Methods for Singularly Perturbed Differential Equations. Convection-Diffusion-Reaction and Flow Problems, Springer Series in Computational Mathematics, 24, Springer-Verlag, Berlin, 1996 | DOI | MR | Zbl