Comparison of two algorithms for the numerical solution of the two-dimensional vector tomography
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 10 (2013), pp. 90-108

Voir la notice de l'article provenant de la source Math-Net.Ru

We compare two algorithms for reconstruction the vector fields from the known values of the ray transforms. The first algorithm is based on the least square method, approximating sequence is constructed with using the $B$-splines. The second algorithm is based on the method of singular value decomposition of operators of ray transforms, basis vector fields are constructed with using the harmonic polynomials and Jacobi polynomials.
Keywords: vector tomography, solenoidal field, potential field, approximation, ray transforms, least square method, $B$-splines
Mots-clés : singular value decomposition, orthogonal polynomials.
@article{SEMR_2013_10_a55,
     author = {I. E. Svetov and A. P. Polyakova},
     title = {Comparison of two algorithms for the numerical solution of the two-dimensional vector tomography},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {90--108},
     publisher = {mathdoc},
     volume = {10},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2013_10_a55/}
}
TY  - JOUR
AU  - I. E. Svetov
AU  - A. P. Polyakova
TI  - Comparison of two algorithms for the numerical solution of the two-dimensional vector tomography
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2013
SP  - 90
EP  - 108
VL  - 10
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2013_10_a55/
LA  - ru
ID  - SEMR_2013_10_a55
ER  - 
%0 Journal Article
%A I. E. Svetov
%A A. P. Polyakova
%T Comparison of two algorithms for the numerical solution of the two-dimensional vector tomography
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2013
%P 90-108
%V 10
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2013_10_a55/
%G ru
%F SEMR_2013_10_a55
I. E. Svetov; A. P. Polyakova. Comparison of two algorithms for the numerical solution of the two-dimensional vector tomography. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 10 (2013), pp. 90-108. http://geodesic.mathdoc.fr/item/SEMR_2013_10_a55/