Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SEMR_2013_10_a55, author = {I. E. Svetov and A. P. Polyakova}, title = {Comparison of two algorithms for the numerical solution of the two-dimensional vector tomography}, journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a}, pages = {90--108}, publisher = {mathdoc}, volume = {10}, year = {2013}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/SEMR_2013_10_a55/} }
TY - JOUR AU - I. E. Svetov AU - A. P. Polyakova TI - Comparison of two algorithms for the numerical solution of the two-dimensional vector tomography JO - Sibirskie èlektronnye matematičeskie izvestiâ PY - 2013 SP - 90 EP - 108 VL - 10 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SEMR_2013_10_a55/ LA - ru ID - SEMR_2013_10_a55 ER -
%0 Journal Article %A I. E. Svetov %A A. P. Polyakova %T Comparison of two algorithms for the numerical solution of the two-dimensional vector tomography %J Sibirskie èlektronnye matematičeskie izvestiâ %D 2013 %P 90-108 %V 10 %I mathdoc %U http://geodesic.mathdoc.fr/item/SEMR_2013_10_a55/ %G ru %F SEMR_2013_10_a55
I. E. Svetov; A. P. Polyakova. Comparison of two algorithms for the numerical solution of the two-dimensional vector tomography. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 10 (2013), pp. 90-108. http://geodesic.mathdoc.fr/item/SEMR_2013_10_a55/
[1] V. G. Romanov, Obratnye zadachi matematicheskoi fiziki, Nauka, M., 1984 | MR
[2] V. A. Sharafutdinov, Integral Geometry of Tensor Fields, VSP, Utrecht, 1994 | MR | Zbl
[3] T. Schuster, “20 years of imaging in vector field tomography: a review”, Mathematical Methods in Biomedical Imaging and Intensity-Modulated Radiation Therapy (IMRT), Publications of the Scuola Normale Superiore, CRM Series, 7, eds. Y. Censor, M. Jiang, A. K. Louis, Birkhäuser, 2008, 389–424 | MR
[4] E. Yu. Derevtsov, A. G. Kleshchev, V. A. Sharafutdinov, “Numerical solution of the emission $2D$-tomography problem for a medium with absorption and refraction”, Journal of Inverse and Ill-Posed Problems, 7:1 (1999), 83–103 | MR | Zbl
[5] E. Yu. Derevtsov, I. G. Kashina, “Chislennoe reshenie zadachi vektornoi tomografii s pomoschyu polinomialnykh bazisov”, Sibirskii Zhurnal Vychislitelnoi Matematiki, 5:3 (2002), 233–254 | MR | Zbl
[6] E. Yu. Derevtsov, I. G. Kashina, “Priblizhennoe reshenie zadachi rekonstruktsii tenzornogo polya vtoroi valentnosti s pomoschyu polinomialnykh bazisov”, Sibirskii Zhurnal Industrialnoi Matematiki, 5:1 (2002), 39–62 | MR | Zbl
[7] E. Yu. Derevtsov, I. E. Svetov, Yu. S. Volkov, “Ispolzovanie $B$-splainov v zadache emissionnoi $2D$-tomografii v refragiruyuschei srede”, Sibirskii Zhurnal Industrialnoi Matematiki, 11:3 (2008), 45–60 | MR | Zbl
[8] I. E. Svetov, A. P. Polyakova, “Vosstanovlenie 2-tenzornykh polei, zadannykh v edinichnom kruge, po ikh luchevym preobrazovaniyam na osnove MNK s ispolzovaniem $B$-splainov”, Sibirskii Zhurnal Vychislitelnoi Matematiki, 13:2 (2010), 183–199 | Zbl
[9] E. Yu. Derevtsov, I. E. Svetov, Yu. S. Volkov, T. Schuster, “Numerical $B$-spline solution of emission and vector 2$D$-tomography problems for media with absorbtion and refraction”, Proceedings 2008 IEEE Region 8 International Conference on Computational Technologies in Electrical and Electronics Engineering, SIBIRCON-08 (Novosibirsk, Russia, July 21–25, 2008), Novosibirsk Scientific Center, 212–217
[10] M. E. Davison, “A singular value decomposition for the Radon transform in $n$-dimensional Euclidean space”, Numerical Functional Analysis and Optimization, 3 (1981), 321–340 | DOI | MR | Zbl
[11] A. K. Louis, “Orthogonal function series expansions and the null space of the Radon transform”, SIAM Journal on Mathematical Analysis, 15 (1984), 621–633 | DOI | MR | Zbl
[12] E. T. Quinto, “Singular value decomposition and inversion methods for the exterior Radon transform and a spherical transform”, Journal of Mathematical Analysis and Applications, 95 (1985), 437–448 | DOI | MR
[13] P. Maass, “The X-ray transform: Singular value decomposition and resolution”, Inverse problems, 3 (1987), 727–741 | DOI | MR
[14] A. K. Louis, “Incomplete Data Problems in X-Ray Computerized Tomography. I: Singular Value Decomposition of the Limited Angle Transform”, Numerische Mathematik, 48 (1986), 251–262 | DOI | MR | Zbl
[15] E. Yu. Derevtsov, S. G. Kazantsev, T. Schuster, “Polynomial bases for subspaces of vector fields in the unit ball. Method of ridge functions”, Journal of Inverse and Ill-Posed Problems, 15:1 (2007), 1–38 | DOI | MR
[16] E. Yu. Derevtsov, A. V. Efimov, A. K. Louis, T. Schuster, “Singular value decomposition and its application to numerical inversion for ray transforms in 2D vector tomography”, Journal of Inverse and Ill-Posed Problems, 19:4–5 (2011), 689–715 | MR
[17] H. Weyl, “The method of orthogonal projection in potential theory”, Duke Mathematical Journal, 7 (1940), 411–444 | DOI | MR
[18] M. M. Lavrentev, V. G. Romanov, S. P. Shishatskii, Nekorrektnye zadachi matematicheskoi fiziki i analiza, Nauka, M., 1980 | MR
[19] V. A. Trenogin, Funktsionalnyi analiz, Nauka, M., 1980 | MR | Zbl
[20] F. Natterer, Matematicheskie aspekty kompyuternoi tomografii, Mir, M., 1990 | MR | Zbl
[21] Yu. S. Zavyalov, B. I. Kvasov, V. L. Miroshnichenko, Metody splain-funktsii, Nauka, M., 1980 | MR
[22] A. P. Polyakova, “O poluchenii analiticheskikh vyrazhenii dlya obrazov $B$-splainov pri preobrazovanii Radona i ikh ispolzovanii v zadachakh skalyarnoi tomografii”, Trudy Pervoi mezhdunarodnoi molodezhnoi shkoly-konferentsii “Teoriya i chislennye metody resheniya obratnykh i nekorrektnykh zadach”, Chast I, Sibirskie Elektronnye Matematicheskie Izvestiya, 7, 2010, 248–257
[23] K. Enslein, E. Relston, G. S. Uilf (red.), Statisticheskie metody dlya EVM, Nauka, M., 1986 | Zbl