Comparison of two algorithms for the numerical solution of the two-dimensional vector tomography
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 10 (2013), pp. 90-108.

Voir la notice de l'article provenant de la source Math-Net.Ru

We compare two algorithms for reconstruction the vector fields from the known values of the ray transforms. The first algorithm is based on the least square method, approximating sequence is constructed with using the $B$-splines. The second algorithm is based on the method of singular value decomposition of operators of ray transforms, basis vector fields are constructed with using the harmonic polynomials and Jacobi polynomials.
Keywords: vector tomography, solenoidal field, potential field, approximation, ray transforms, least square method, $B$-splines
Mots-clés : singular value decomposition, orthogonal polynomials.
@article{SEMR_2013_10_a55,
     author = {I. E. Svetov and A. P. Polyakova},
     title = {Comparison of two algorithms for the numerical solution of the two-dimensional vector tomography},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {90--108},
     publisher = {mathdoc},
     volume = {10},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2013_10_a55/}
}
TY  - JOUR
AU  - I. E. Svetov
AU  - A. P. Polyakova
TI  - Comparison of two algorithms for the numerical solution of the two-dimensional vector tomography
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2013
SP  - 90
EP  - 108
VL  - 10
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2013_10_a55/
LA  - ru
ID  - SEMR_2013_10_a55
ER  - 
%0 Journal Article
%A I. E. Svetov
%A A. P. Polyakova
%T Comparison of two algorithms for the numerical solution of the two-dimensional vector tomography
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2013
%P 90-108
%V 10
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2013_10_a55/
%G ru
%F SEMR_2013_10_a55
I. E. Svetov; A. P. Polyakova. Comparison of two algorithms for the numerical solution of the two-dimensional vector tomography. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 10 (2013), pp. 90-108. http://geodesic.mathdoc.fr/item/SEMR_2013_10_a55/

[1] V. G. Romanov, Obratnye zadachi matematicheskoi fiziki, Nauka, M., 1984 | MR

[2] V. A. Sharafutdinov, Integral Geometry of Tensor Fields, VSP, Utrecht, 1994 | MR | Zbl

[3] T. Schuster, “20 years of imaging in vector field tomography: a review”, Mathematical Methods in Biomedical Imaging and Intensity-Modulated Radiation Therapy (IMRT), Publications of the Scuola Normale Superiore, CRM Series, 7, eds. Y. Censor, M. Jiang, A. K. Louis, Birkhäuser, 2008, 389–424 | MR

[4] E. Yu. Derevtsov, A. G. Kleshchev, V. A. Sharafutdinov, “Numerical solution of the emission $2D$-tomography problem for a medium with absorption and refraction”, Journal of Inverse and Ill-Posed Problems, 7:1 (1999), 83–103 | MR | Zbl

[5] E. Yu. Derevtsov, I. G. Kashina, “Chislennoe reshenie zadachi vektornoi tomografii s pomoschyu polinomialnykh bazisov”, Sibirskii Zhurnal Vychislitelnoi Matematiki, 5:3 (2002), 233–254 | MR | Zbl

[6] E. Yu. Derevtsov, I. G. Kashina, “Priblizhennoe reshenie zadachi rekonstruktsii tenzornogo polya vtoroi valentnosti s pomoschyu polinomialnykh bazisov”, Sibirskii Zhurnal Industrialnoi Matematiki, 5:1 (2002), 39–62 | MR | Zbl

[7] E. Yu. Derevtsov, I. E. Svetov, Yu. S. Volkov, “Ispolzovanie $B$-splainov v zadache emissionnoi $2D$-tomografii v refragiruyuschei srede”, Sibirskii Zhurnal Industrialnoi Matematiki, 11:3 (2008), 45–60 | MR | Zbl

[8] I. E. Svetov, A. P. Polyakova, “Vosstanovlenie 2-tenzornykh polei, zadannykh v edinichnom kruge, po ikh luchevym preobrazovaniyam na osnove MNK s ispolzovaniem $B$-splainov”, Sibirskii Zhurnal Vychislitelnoi Matematiki, 13:2 (2010), 183–199 | Zbl

[9] E. Yu. Derevtsov, I. E. Svetov, Yu. S. Volkov, T. Schuster, “Numerical $B$-spline solution of emission and vector 2$D$-tomography problems for media with absorbtion and refraction”, Proceedings 2008 IEEE Region 8 International Conference on Computational Technologies in Electrical and Electronics Engineering, SIBIRCON-08 (Novosibirsk, Russia, July 21–25, 2008), Novosibirsk Scientific Center, 212–217

[10] M. E. Davison, “A singular value decomposition for the Radon transform in $n$-dimensional Euclidean space”, Numerical Functional Analysis and Optimization, 3 (1981), 321–340 | DOI | MR | Zbl

[11] A. K. Louis, “Orthogonal function series expansions and the null space of the Radon transform”, SIAM Journal on Mathematical Analysis, 15 (1984), 621–633 | DOI | MR | Zbl

[12] E. T. Quinto, “Singular value decomposition and inversion methods for the exterior Radon transform and a spherical transform”, Journal of Mathematical Analysis and Applications, 95 (1985), 437–448 | DOI | MR

[13] P. Maass, “The X-ray transform: Singular value decomposition and resolution”, Inverse problems, 3 (1987), 727–741 | DOI | MR

[14] A. K. Louis, “Incomplete Data Problems in X-Ray Computerized Tomography. I: Singular Value Decomposition of the Limited Angle Transform”, Numerische Mathematik, 48 (1986), 251–262 | DOI | MR | Zbl

[15] E. Yu. Derevtsov, S. G. Kazantsev, T. Schuster, “Polynomial bases for subspaces of vector fields in the unit ball. Method of ridge functions”, Journal of Inverse and Ill-Posed Problems, 15:1 (2007), 1–38 | DOI | MR

[16] E. Yu. Derevtsov, A. V. Efimov, A. K. Louis, T. Schuster, “Singular value decomposition and its application to numerical inversion for ray transforms in 2D vector tomography”, Journal of Inverse and Ill-Posed Problems, 19:4–5 (2011), 689–715 | MR

[17] H. Weyl, “The method of orthogonal projection in potential theory”, Duke Mathematical Journal, 7 (1940), 411–444 | DOI | MR

[18] M. M. Lavrentev, V. G. Romanov, S. P. Shishatskii, Nekorrektnye zadachi matematicheskoi fiziki i analiza, Nauka, M., 1980 | MR

[19] V. A. Trenogin, Funktsionalnyi analiz, Nauka, M., 1980 | MR | Zbl

[20] F. Natterer, Matematicheskie aspekty kompyuternoi tomografii, Mir, M., 1990 | MR | Zbl

[21] Yu. S. Zavyalov, B. I. Kvasov, V. L. Miroshnichenko, Metody splain-funktsii, Nauka, M., 1980 | MR

[22] A. P. Polyakova, “O poluchenii analiticheskikh vyrazhenii dlya obrazov $B$-splainov pri preobrazovanii Radona i ikh ispolzovanii v zadachakh skalyarnoi tomografii”, Trudy Pervoi mezhdunarodnoi molodezhnoi shkoly-konferentsii “Teoriya i chislennye metody resheniya obratnykh i nekorrektnykh zadach”, Chast I, Sibirskie Elektronnye Matematicheskie Izvestiya, 7, 2010, 248–257

[23] K. Enslein, E. Relston, G. S. Uilf (red.), Statisticheskie metody dlya EVM, Nauka, M., 1986 | Zbl