One the masking problem for the two-dimensional Helmholtz equation
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 10 (2013), pp. 378-392
Voir la notice de l'article provenant de la source Math-Net.Ru
Control problems for 2-D Helmholtz equation in a bounded domain with mixed boundary conditions are considered. The boundary impedance entering into impedance boundary condition for the field plays the role of control. The solvability of both the direct problem and the control problem is proved. The uniqueness and stability of optimal solutions with respect to small perturbations of both the cost functional and a given function are established.
Keywords:
Helmholtz equation, mixed boundary value problem, control problem, boundary control, solvability, stability estimates.
Mots-clés : impedance
Mots-clés : impedance
@article{SEMR_2013_10_a50,
author = {A. V. Lobanov and R. V. Zubrev},
title = {One the masking problem for the two-dimensional {Helmholtz} equation},
journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
pages = {378--392},
publisher = {mathdoc},
volume = {10},
year = {2013},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/SEMR_2013_10_a50/}
}
TY - JOUR AU - A. V. Lobanov AU - R. V. Zubrev TI - One the masking problem for the two-dimensional Helmholtz equation JO - Sibirskie èlektronnye matematičeskie izvestiâ PY - 2013 SP - 378 EP - 392 VL - 10 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SEMR_2013_10_a50/ LA - ru ID - SEMR_2013_10_a50 ER -
A. V. Lobanov; R. V. Zubrev. One the masking problem for the two-dimensional Helmholtz equation. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 10 (2013), pp. 378-392. http://geodesic.mathdoc.fr/item/SEMR_2013_10_a50/