Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SEMR_2013_10_a50, author = {A. V. Lobanov and R. V. Zubrev}, title = {One the masking problem for the two-dimensional {Helmholtz} equation}, journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a}, pages = {378--392}, publisher = {mathdoc}, volume = {10}, year = {2013}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/SEMR_2013_10_a50/} }
TY - JOUR AU - A. V. Lobanov AU - R. V. Zubrev TI - One the masking problem for the two-dimensional Helmholtz equation JO - Sibirskie èlektronnye matematičeskie izvestiâ PY - 2013 SP - 378 EP - 392 VL - 10 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SEMR_2013_10_a50/ LA - ru ID - SEMR_2013_10_a50 ER -
A. V. Lobanov; R. V. Zubrev. One the masking problem for the two-dimensional Helmholtz equation. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 10 (2013), pp. 378-392. http://geodesic.mathdoc.fr/item/SEMR_2013_10_a50/
[1] G. V. Alekseev, Metod normalnykh voln v podvodnoi akustike, Dalnauka, Vladivostok, 2006
[2] T. S. Angell, A. Kirsch, “The conductive boundary condition for the Maxwell's equations”, SIAM Journal on Applied Mathematics, 52:6 (1992), 1597–1610 | MR | Zbl
[3] F. Cakoni, D. Colton, P. Monk, “The direct and inverse scattering problems for partially coated obstacles”, Inverse problems, 17:6 (2001), 1997–2015 | MR | Zbl
[4] F. Cakoni, D. Colton, “The determination of the surface impedance of a partially coated obstacle from far field data”, SIAM Journal on Applied Mathematics, 64:2 (2004), 709–723 | MR | Zbl
[5] G. Nakamura, M. Sini, “Obstacle and boundaty determination from scattering data”, SIAM Journal on Mathematical Analysis, 39:3 (2007), 819–837 | MR | Zbl
[6] J. J. Liu, G. Nakamura, M. Sini, “Reconstruction of the shape and surface impedance from acoustic scattering data for an arbitrary cylinder”, SIAM Journal on Applied Mathematics, 67:4 (2007), 1124–1146 | MR | Zbl
[7] F. Cakoni, G. Nakamura, M. Sini, N. Zeev, “The identification of a partially coated dielectric medium from far field measurements”, Applicable Analysis, 89:1 (2010), 29–47 | MR
[8] G. V. Alekseev, R. V. Brizitskii, “Teoreticheskii analiz ekstremalnykh zadach granichnogo upravleniya dlya uravnenii Maksvella”, Sibirskii Zhurnal Industrialnoi Matematiki, 5:1 (2011), 3–16 | MR
[9] G. V. Alekseev, R. V. Brizitskii, V. G. Romanov, “Otsenki ustoichivosti reshenii zadach granichnogo upravleniya dlya uravnenii Maksvela pri smeshannykh granichnykh usloviyakh”, Doklady Akademii Nauk, 59 (2012), 7–12
[10] L. Beilina, M. V. Klibanov, “The philosophy of the approximate global convergence for multidimensional coefficient inverse problems”, Complex Variables and Elliptic equations, 57:2–4 (2012), 277–299 | MR | Zbl
[11] L. Beilina, M. V. Klibanov, “A new approximate mathematical model for global convergence for a coefficient inverse problem with backscattering data”, Journal Inverse and Ill-Posed Problems, 20:4 (2012), 513–565 | MR
[12] L. Beilina, M. V. Klibanov, Approximate global convergence and adaptivity for coefficient inverse problems, Springer, New York, 2012 | Zbl
[13] G. V. Alekseev, Optimizatsiya v statsionarnykh zadachakh teplomassoperenosa i magnitnoi gidrodinamiki, Nauchnyi Mir, M., 2010
[14] G. V. Alekseev, “Zadachi upravleniya dlya statsionarnykh uravnenii magnitnoi gidrodinamiki”, Doklady Rossiiskoi Akademii Nauk, 395:3 (2004), 322–325 | MR
[15] G. V. Alekseev, “Razreshimost zadach upravleniya dlya statsionarnykh uravnenii magnitnoi gidrodinamiki vyazkoi zhidkosti”, Sibirskii matematicheskii zhurnal, 45:2 (2004), 243–262 | MR
[16] A. D. Ioffe, V. M. Tikhomirov, Teoriya ekstremalnykh zadach, Nauka, M., 1974 | MR | Zbl
[17] Zh. Sea, Optimizatsiya, teoriya i algoritmy, Dunod, Parizh, 1971
[18] G. V. Alekseev, I. S. Vakhitov, O. V. Soboleva, “Otsenki ustoichivosti v zadachakh identifikatsii dlya uravneniya konvektsii-diffuzii-reaktsii”, Zhurnal vychislitelnoi matematiki i matematicheskoi fiziki, 52:12 (2012), 2190–2205