One the masking problem for the two-dimensional Helmholtz equation
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 10 (2013), pp. 378-392.

Voir la notice de l'article provenant de la source Math-Net.Ru

Control problems for 2-D Helmholtz equation in a bounded domain with mixed boundary conditions are considered. The boundary impedance entering into impedance boundary condition for the field plays the role of control. The solvability of both the direct problem and the control problem is proved. The uniqueness and stability of optimal solutions with respect to small perturbations of both the cost functional and a given function are established.
Keywords: Helmholtz equation, mixed boundary value problem, control problem, boundary control, solvability, stability estimates.
Mots-clés : impedance
@article{SEMR_2013_10_a50,
     author = {A. V. Lobanov and R. V. Zubrev},
     title = {One the masking problem for the two-dimensional {Helmholtz} equation},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {378--392},
     publisher = {mathdoc},
     volume = {10},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2013_10_a50/}
}
TY  - JOUR
AU  - A. V. Lobanov
AU  - R. V. Zubrev
TI  - One the masking problem for the two-dimensional Helmholtz equation
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2013
SP  - 378
EP  - 392
VL  - 10
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2013_10_a50/
LA  - ru
ID  - SEMR_2013_10_a50
ER  - 
%0 Journal Article
%A A. V. Lobanov
%A R. V. Zubrev
%T One the masking problem for the two-dimensional Helmholtz equation
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2013
%P 378-392
%V 10
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2013_10_a50/
%G ru
%F SEMR_2013_10_a50
A. V. Lobanov; R. V. Zubrev. One the masking problem for the two-dimensional Helmholtz equation. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 10 (2013), pp. 378-392. http://geodesic.mathdoc.fr/item/SEMR_2013_10_a50/

[1] G. V. Alekseev, Metod normalnykh voln v podvodnoi akustike, Dalnauka, Vladivostok, 2006

[2] T. S. Angell, A. Kirsch, “The conductive boundary condition for the Maxwell's equations”, SIAM Journal on Applied Mathematics, 52:6 (1992), 1597–1610 | MR | Zbl

[3] F. Cakoni, D. Colton, P. Monk, “The direct and inverse scattering problems for partially coated obstacles”, Inverse problems, 17:6 (2001), 1997–2015 | MR | Zbl

[4] F. Cakoni, D. Colton, “The determination of the surface impedance of a partially coated obstacle from far field data”, SIAM Journal on Applied Mathematics, 64:2 (2004), 709–723 | MR | Zbl

[5] G. Nakamura, M. Sini, “Obstacle and boundaty determination from scattering data”, SIAM Journal on Mathematical Analysis, 39:3 (2007), 819–837 | MR | Zbl

[6] J. J. Liu, G. Nakamura, M. Sini, “Reconstruction of the shape and surface impedance from acoustic scattering data for an arbitrary cylinder”, SIAM Journal on Applied Mathematics, 67:4 (2007), 1124–1146 | MR | Zbl

[7] F. Cakoni, G. Nakamura, M. Sini, N. Zeev, “The identification of a partially coated dielectric medium from far field measurements”, Applicable Analysis, 89:1 (2010), 29–47 | MR

[8] G. V. Alekseev, R. V. Brizitskii, “Teoreticheskii analiz ekstremalnykh zadach granichnogo upravleniya dlya uravnenii Maksvella”, Sibirskii Zhurnal Industrialnoi Matematiki, 5:1 (2011), 3–16 | MR

[9] G. V. Alekseev, R. V. Brizitskii, V. G. Romanov, “Otsenki ustoichivosti reshenii zadach granichnogo upravleniya dlya uravnenii Maksvela pri smeshannykh granichnykh usloviyakh”, Doklady Akademii Nauk, 59 (2012), 7–12

[10] L. Beilina, M. V. Klibanov, “The philosophy of the approximate global convergence for multidimensional coefficient inverse problems”, Complex Variables and Elliptic equations, 57:2–4 (2012), 277–299 | MR | Zbl

[11] L. Beilina, M. V. Klibanov, “A new approximate mathematical model for global convergence for a coefficient inverse problem with backscattering data”, Journal Inverse and Ill-Posed Problems, 20:4 (2012), 513–565 | MR

[12] L. Beilina, M. V. Klibanov, Approximate global convergence and adaptivity for coefficient inverse problems, Springer, New York, 2012 | Zbl

[13] G. V. Alekseev, Optimizatsiya v statsionarnykh zadachakh teplomassoperenosa i magnitnoi gidrodinamiki, Nauchnyi Mir, M., 2010

[14] G. V. Alekseev, “Zadachi upravleniya dlya statsionarnykh uravnenii magnitnoi gidrodinamiki”, Doklady Rossiiskoi Akademii Nauk, 395:3 (2004), 322–325 | MR

[15] G. V. Alekseev, “Razreshimost zadach upravleniya dlya statsionarnykh uravnenii magnitnoi gidrodinamiki vyazkoi zhidkosti”, Sibirskii matematicheskii zhurnal, 45:2 (2004), 243–262 | MR

[16] A. D. Ioffe, V. M. Tikhomirov, Teoriya ekstremalnykh zadach, Nauka, M., 1974 | MR | Zbl

[17] Zh. Sea, Optimizatsiya, teoriya i algoritmy, Dunod, Parizh, 1971

[18] G. V. Alekseev, I. S. Vakhitov, O. V. Soboleva, “Otsenki ustoichivosti v zadachakh identifikatsii dlya uravneniya konvektsii-diffuzii-reaktsii”, Zhurnal vychislitelnoi matematiki i matematicheskoi fiziki, 52:12 (2012), 2190–2205