Error bound for a generalized M.\,A.~Lavrentiev's formula via the norm in a fractional Sobolev space
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 10 (2013), pp. 335-377.

Voir la notice de l'article provenant de la source Math-Net.Ru

We generalize M. A. Lavrentiev's approximate formula for the conformal mapping of the perturbed half-plane onto the half-plane. The generalization concerns harmonic functions and their derivatives in locally perturbed half-spaces (Lipschitz epigraphs). For both formulas, we obtain remainder estimates involving the square of the norm of the perturbing function in the fractional homogeneous Sobolev space $\dot{H}^{1/2}$. By the Kashin–Besov–Kolyada inequality, these estimates imply pointwise stability bounds in terms of the Lebesgue measure. Moreover, we prove the joint analyticity of the above-named harmonic functions with respect to the perturbing parameter and the space variables and justify a result on the interpolation between $L^1$ and homogeneous Slobodetskii spaces which is essentially due to A. Cohen.
Keywords: harmonic function, quantitative stability, remainder estimate.
Mots-clés : Lavrentiev formula, perturbed domain
@article{SEMR_2013_10_a49,
     author = {A. I. Parfenov},
     title = {Error bound for a generalized {M.\,A.~Lavrentiev's} formula via the norm in a fractional {Sobolev} space},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {335--377},
     publisher = {mathdoc},
     volume = {10},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2013_10_a49/}
}
TY  - JOUR
AU  - A. I. Parfenov
TI  - Error bound for a generalized M.\,A.~Lavrentiev's formula via the norm in a fractional Sobolev space
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2013
SP  - 335
EP  - 377
VL  - 10
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2013_10_a49/
LA  - ru
ID  - SEMR_2013_10_a49
ER  - 
%0 Journal Article
%A A. I. Parfenov
%T Error bound for a generalized M.\,A.~Lavrentiev's formula via the norm in a fractional Sobolev space
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2013
%P 335-377
%V 10
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2013_10_a49/
%G ru
%F SEMR_2013_10_a49
A. I. Parfenov. Error bound for a generalized M.\,A.~Lavrentiev's formula via the norm in a fractional Sobolev space. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 10 (2013), pp. 335-377. http://geodesic.mathdoc.fr/item/SEMR_2013_10_a49/

[1] I. V. Andrianov, V. V. Danishevskii, A. O. Ivankov, Asimptoticheskie metody v teorii kolebanii balok i plastin, Pridnepr. gos. akad. stroitelstva i arkhitektury, Dnepropetrovsk, 2010

[2] V. I. Arnold, “Mody i kvazimody”, Funkts. analiz i ego pril., 6 (1972), 12–20 | MR | Zbl

[3] I. Berg, I. Lëfstrëm, Interpolyatsionnye prostranstva. Vvedenie, Mir, M., 1980 | MR

[4] M. Sh. Birman, “Vozmuscheniya nepreryvnogo spektra singulyarnogo ellipticheskogo operatora pri izmenenii granitsy i granichnykh uslovii”, Vestnik Leningr. un-ta. Ser. mat. mekh. astr., 17 (1962), 22–55 | MR | Zbl

[5] V. I. Burenkov, P. D. Lamberti, M. Lantsa de Kristoforis, “Spektralnaya ustoichivost neotritsatelnykh samosopryazhennykh operatorov”, Sovr. mat. Fund. napr., 15 (2006), 76–111 | MR

[6] S. E. Varshavskii, “Konformnoe otobrazhenie beskonechnykh polos”, Matematika. Periodicheskii sbornik perevodov inostrannykh statei, 2, IIL, M., 1958, 67–116

[7] D. Gilbarg, M. Trudinger, Ellipticheskie differentsialnye uravneniya s chastnymi proizvodnymi vtorogo poryadka, Nauka, M., 1989 | MR | Zbl

[8] G. M. Goluzin, Geometricheskaya teoriya funktsii kompleksnogo peremennogo, Nauka, M., 1966 | MR

[9] L. V. Kantorovich, “O konformnom otobrazhenii”, Mat. sbornik, 40 (1933), 294–325 | Zbl

[10] L. V. Kantorovich, V. I. Krylov, Priblizhennye metody vysshego analiza, GITTL, Moskva–Leningrad, 1950 | Zbl

[11] T. Kato, Teoriya vozmuschenii lineinykh operatorov, Mir, M., 1972 | MR | Zbl

[12] B. S. Kashin, “Zamechaniya ob otsenke funktsii Lebega ortonormirovannykh sistem”, Mat. sbornik, 106 (1978), 380–385 | Zbl

[13] M. V. Keldysh, “O razreshimosti i ustoichivosti zadachi Dirikhle”, UMN, 8 (1941), 171–231 | Zbl

[14] V. I. Kolyada, “Neravenstva tipa Galyardo–Nirenberga i otsenki modulei nepreryvnosti”, UMN, 60 (2005), 139–156 | MR | Zbl

[15] S. G. Krein, “Povedenie reshenii ellipticheskikh zadach pri variatsii oblasti”, Studia Math., 31 (1968), 411–424 | MR | Zbl

[16] R. Kurant, Uravneniya s chastnymi proizvodnymi, Mir, M., 1964 | MR

[17] R. Kurant, D. Gilbert, Metody matematicheskoi fiziki, v. 1, ONTI, M.–L., 1933

[18] R. Kurant, D. Gilbert, Metody matematicheskoi fiziki, v. 2, GITTL, M., 1945

[19] M. Lavrentev, “O nekotorykh svoistvakh odnolistnykh funktsii s prilozheniyami k teorii strui”, Mat. sbornik, 4 (1938), 391–458

[20] M. A. Lavrentev, B. V. Shabat, Metody teorii funktsii kompleksnogo peremennogo, Nauka, M., 1973 | MR

[21] E. M. Landis, Uravneniya vtorogo poryadka ellipticheskogo i parabolicheskogo tipov, Nauka, M., 1971 | MR

[22] V. P. Mikhailov, Differentsialnye uravneniya v chastnykh proizvodnykh, Nauka, M., 1976 | MR | Zbl

[23] S. R. Nasyrov, “Variatsii emkostei Robena i ikh prilozheniya”, Sib. mat. zhurnal, 49 (2008), 1128–1146 | MR

[24] A. I. Parfenov, “Kriterii raspryamlyaemosti lipshitsevoi poverkhnosti po Lizorkinu–Tribelyu, I”, Mat. trudy, 12 (2009), 144–204 | MR | Zbl

[25] A. I. Parfenov, “Kriterii raspryamlyaemosti lipshitsevoi poverkhnosti po Lizorkinu–Tribelyu, III”, Mat. trudy, 13 (2010), 139–178 | MR | Zbl

[26] A. I. Parfenov, “Vesovaya apriornaya otsenka v raspryamlyaemykh oblastyakh lokalnogo tipa Lyapunova–Dini”, Sib. elektron. matem. izv., 9 (2012), 65–150 | MR

[27] G. V. Siryk, “K voprosu o variatsionnykh printsipakh M. A. Lavrenteva”, Issledovaniya po teorii funktsii kompleksnogo peremennogo s prilozheniyami k mekhanike sploshnykh sred, Naukova dumka, Kiev, 1986, 128–146 | MR

[28] S. L. Sobolev, Nekotorye primeneniya funktsionalnogo analiza v matematicheskoi fizike, Izd-vo LGU, Leningrad, 1950 | MR

[29] Kh. Tribel, Teoriya interpolyatsii, funktsionalnye prostranstva, differentsialnye operatory, Mir, M., 1980 | MR

[30] Kh. Tribel, Teoriya funktsionalnykh prostranstv, Mir, M., 1986, MR0839650 pp. | MR | Zbl

[31] L. Khërmander, Analiz lineinykh differentsialnykh operatorov s chastnymi proizvodnymi, v. 1, Mir, M., 1986 | MR

[32] M. Shiffer, D. K. Spenser, Funktsionaly na konechnykh rimanovykh poverkhnostyakh, IIL, M., 1957

[33] L. K. Evans, R. F. Gariepi, Teoriya mery i tonkie svoistva funktsii, Nauchnaya kniga (IDMI), Novosibirsk, 2002

[34] R. Edvards, Funktsionalnyi analiz. Teoriya i prilozheniya, Mir, M., 1969 | Zbl

[35] C. Amrouche, Š. Nečasová, J. Sokołowski, “Shape sensitivity analysis of the Dirichlet Laplacian in a half-space”, Bull. Pol. Acad. Sci. Math., 52 (2004), 365–380 | MR | Zbl

[36] H. Bahouri, J.-Y. Chemin, R. Danchin,, Fourier Analysis and Nonlinear Partial Differential Equations, Grundlehren der mathematischen Wissenschaften, 343, Springer-Verlag, Berlin, 2011 | MR

[37] R. Bellman, Perturbation Techniques in Mathematics, Physics, and Engineering, Holt, Rinehart and Winston Inc., New York, 1966 | MR

[38] M. van den Berg, “On Rayleigh's formula for the first Dirichlet eigenvalue of a radial perturbation of a ball”, J. Geom. Anal., 2012, 14 pp. | DOI

[39] O. P. Bruno, F. Reitich, “High-order boundary perturbation methods”, Mathematical Modeling in Optical Science, Frontiers Appl. Math., 22, SIAM, Philadelphia, 2001, 71–109 | MR

[40] D. Bucur, “Regularity of optimal convex shapes”, J. Convex Anal., 10 (2003), 501–516 | MR | Zbl

[41] V. I. Burenkov, P. D. Lamberti, “Sharp spectral stability estimates via the Lebesgue measure of domains for higher order elliptic operators”, Revista Mat. Complut., 25 (2012), 435–457 | MR

[42] S. N. Chandler-Wilde, R. Potthast, “The domain derivative in rough-surface scattering and rigorous estimates for first-order perturbation theory”, Proc. R. Soc. Lond. A, 458 (2002), 2967–3001 | MR | Zbl

[43] A. Cohen, “Ondelettes, espaces d'interpolation et applications” (1999–2000), Sémin. Équ. Dériv. Partielles, I, Éc. Polytech., Cent. Math., Palaiseau, 2000, 12 pp. | MR

[44] A. Cohen, W. Dahmen, I. Daubechies, R. DeVore, “Harmonic analysis of the space BV”, Rev. Mat. Iberoamericana, 19 (2003), 235–263 | MR | Zbl

[45] M. Dambrine, D. Kateb, “A remark on precomposition on $\mathrm H^{1/2}(S^1)$ and $\varepsilon$-identifiability of disks in tomography”, J. Math. Anal. Appl., 337 (2008), 594–616 | MR | Zbl

[46] M. C. Delfour, J.-P. Zolésio, Shapes and Geometries. Analysis, Differential Calculus, and Optimization, Adv. Design Control, 4, SIAM, Philadelphia, 2001 | MR | Zbl

[47] K. Eppler, H. Harbrecht, R. Schneider, “On convergence in elliptic shape optimization”, SIAM J. Control Optim., 46 (2007), 61–83 | MR | Zbl

[48] M. Frazier, B. Jawerth, “Decompositions of Besov spaces”, Indiana Univ. Math. J., 34 (1985), 777–799 | MR | Zbl

[49] M. Frazier, B. Jawerth, G. Weiss, Littlewood–Paley Theory and the Study of Function Spaces, CBMS Regional Conf. Ser. Math., 79, AMS, Providence, 1991 | MR | Zbl

[50] J. B. Garnett, D. E. Marshall, Harmonic Measure, New Math. Monogr., 2, Cambridge Univ. Press, Cambridge, 2005 | MR | Zbl

[51] P. Grinfeld, “Hadamard's formula inside and out”, J. Optim. Theory Appl., 146 (2010), 654–690 | MR | Zbl

[52] P. Grisvard, Elliptic Problems in Nonsmooth Domains, Monogr. and Stud. in Math., 24, Pitman Publishing Inc., Boston–London–Melbourne, 1985 | MR | Zbl

[53] J. Hadamard, Leçons sur le calcul des variations, v. I, A. Hermann et Fils, Paris, 1910 | Zbl

[54] H. Hajaiej, L. Molinet, T. Ozawa, B. Wang, “Necessary and sufficient conditions for the fractional Gagliardo–Nirenberg inequalities and applications to Navier–Stokes and generalized Boson equations”, RIMS Kôkyûroku Bessatsu, 26 (2011), 159–175 | MR

[55] L. I. Hedberg, Yu. Netrusov, An Axiomatic Approach to Function Spaces, Spectral Synthesis, and Luzin Approximation, Mem. Amer. Math. Soc., 188, 2007 | MR

[56] A. Henrot, M. Pierre, Variation et optimisation de formes. Une analyse géométrique, Mathématiques Applications, 48, Springer, Berlin, 2005 | MR | Zbl

[57] G. Julia, “Sur une équation aux dérivées fonctionnelles liée à la représentation conforme”, Ann. Sci. de l'É.N.S. 3${}^{\rm e}$ série, 39 (1922), 1–28 | MR | Zbl

[58] B. Kawohl, O. Pironneau, L. Tartar, J.-P. Zolésio, “Optimal Shape Design”, Lectures given at the joint CIM/CIME summer school (Tróia, Portugal, June 1–6, 1998), Lect. Notes Math., 1740, ed. A. Cellina, Springer, Berlin, 2000 | MR | Zbl

[59] V. Kozlov, Domain dependence of eigenvalues of elliptic type operators, preprint, 2012

[60] V. Kozlov, V. Maz'ya, “Asymptotic formula for solutions to elliptic equations near the Lipschitz boundary”, Ann. Mat. Pura Appl. (4), 184 (2005), 185–213 | MR | Zbl

[61] M. Lanza de Cristoforis, “A functional decomposition theorem for the conformal representation”, J. Math. Soc. Japan, 49 (1997), 759–780 | MR | Zbl

[62] A. Lemenant, E. Milakis, “Quantitative stability for the first Dirichlet eigenvalue in Reifenberg flat domains in $\mathbb R^N$”, J. Math. Anal. Appl., 364 (2010), 522–533 | MR | Zbl

[63] J. Nečas, Les méthodes directes en théorie des équations elliptiques, Masson et Cie, Paris; Academia, Prague, 1967 | MR

[64] J. Peetre, New Thoughts on Besov Spaces, Duke University, Durham, 1976 | MR | Zbl

[65] G. Savaré, G. Schimperna, “Domain perturbations and estimates for the solutions of second order elliptic equations”, J. Math. Pures Appl., 81 (2002), 1071–1112 | MR | Zbl

[66] M. Schiffer, “Variation of domain functionals”, Bull. Amer. Math. Soc., 60 (1954), 303–328 | MR | Zbl

[67] S. E. Warschawski, “On conformal mapping of nearly circular regions”, Proc. Amer. Math. Soc., 1 (1950), 562–574 | MR | Zbl

[68] H. Yoshikawa, “On the conformal mapping of nearly circular domains”, J. Math. Soc. Japan, 12 (1960), 174–186 | MR | Zbl