Dissipativity of boundary condition in a mixed problem for the three-dimensional wave equation
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 10 (2013), pp. 311-323.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider a mixed problem for the real three-dimensional wave equation satisfying the uniform Lopatinskii condition. We describe all feasible ways of reduction of the problem to the mixed problem for the symmetric hyperbolic system with the dissipative boundary condition. These ways are parametrized by points of the upper part of a four-dimensional bodily cone of the second order. We characterize the cone location and its geometric parameters by means of the coefficients of the boundary condition in the problem under consideration.
Keywords: wave equation, mixed problem, symmetric hyperbolic system, dissipative boundary condition.
@article{SEMR_2013_10_a47,
     author = {V. M. Gordienko},
     title = {Dissipativity of boundary condition in a mixed problem for the three-dimensional wave equation},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {311--323},
     publisher = {mathdoc},
     volume = {10},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2013_10_a47/}
}
TY  - JOUR
AU  - V. M. Gordienko
TI  - Dissipativity of boundary condition in a mixed problem for the three-dimensional wave equation
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2013
SP  - 311
EP  - 323
VL  - 10
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2013_10_a47/
LA  - ru
ID  - SEMR_2013_10_a47
ER  - 
%0 Journal Article
%A V. M. Gordienko
%T Dissipativity of boundary condition in a mixed problem for the three-dimensional wave equation
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2013
%P 311-323
%V 10
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2013_10_a47/
%G ru
%F SEMR_2013_10_a47
V. M. Gordienko. Dissipativity of boundary condition in a mixed problem for the three-dimensional wave equation. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 10 (2013), pp. 311-323. http://geodesic.mathdoc.fr/item/SEMR_2013_10_a47/

[1] V. M. Gordienko, “Sistemy Fridrikhsa dlya trekhmernogo volnovogo uravneniya”, Sib. mat. zhurn., 6 (2010), 1282–1297 | MR | Zbl

[2] S. K. Godunov, Uravneniya matematicheskoi fiziki, Nauka, M., 1979 | MR | Zbl

[3] V. M. Gordienko, “Un probleme mixte pair l'eqution vectorielle des ondes: Cas de dissipation de l'energie; Cas mal poses”, C. r. Acad. Sci. Serie A, 288:10 (1979), 547–550 | MR | Zbl

[4] V. M. Gordienko, “Simmetrizatsiya smeshannoi zadachi dlya giperbolicheskogo uravneniya vtorogo poryadka s dvumya prostranstvennymi peremennymi”, Sib. mat. zhurn., 2 (1981), 84–104 | MR | Zbl

[5] V. M. Gordienko, “O korrektnosti smeshannoi zadachi dlya volnovogo uravneniya”, Sib. elektron. matem. izv., 7 (2010), 130–138 http://semr.math.nsc.ru/

[6] S. Miyatake, “Mixed problem for hyrperbolic equations of second order with first order complex boundary operators”, Japanese J. Math., 1 (1975), 111–158 | MR | Zbl

[7] A. N. Malyshev, “Smeshannaya zadacha dlya giperbolicheskogo uravnenii vtorogo poryadka s kompleksnym granichnym usloviem pervogo poryadka”, Sib. mat. zhurn., 6 (1983), 102–121 | MR | Zbl

[8] V. M. Gordienko, “Giperbolicheskie sistemy, ekvivalentnye volnovomu uravneniyu”, Sib. mat. zhurn., 1 (2009), 19–27 | MR | Zbl