Darboux integrability of planar polynomial systems
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 10 (2013), pp. 271-284.

Voir la notice de l'article provenant de la source Math-Net.Ru

We prove that a polynomial system with Cauchy–Riemann conditions has Darboux integral which may be derived without quadratures. We give classes of such systems which have the rational first integral.
Keywords: Darboux integrability, the first integrals, the rational first integrals.
@article{SEMR_2013_10_a46,
     author = {E. P. Volokitin},
     title = {Darboux integrability of planar polynomial systems},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {271--284},
     publisher = {mathdoc},
     volume = {10},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2013_10_a46/}
}
TY  - JOUR
AU  - E. P. Volokitin
TI  - Darboux integrability of planar polynomial systems
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2013
SP  - 271
EP  - 284
VL  - 10
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2013_10_a46/
LA  - ru
ID  - SEMR_2013_10_a46
ER  - 
%0 Journal Article
%A E. P. Volokitin
%T Darboux integrability of planar polynomial systems
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2013
%P 271-284
%V 10
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2013_10_a46/
%G ru
%F SEMR_2013_10_a46
E. P. Volokitin. Darboux integrability of planar polynomial systems. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 10 (2013), pp. 271-284. http://geodesic.mathdoc.fr/item/SEMR_2013_10_a46/

[1] Gregor J., “Dynamické systémy s regulární pravou stranou, I”, Pokroky matematiky, fyziky a astronomie, 3:2 (1958), 153–160 | Zbl

[2] Gavrilov N. I., Metody teorii obyknovennykh differentsialnykh uravnenii, Vysshaya shkola, M., 1962 | MR | Zbl

[3] Lukashevich N. A., “Izokhronnost tsentra nekotorykh sistem differentsialnykh uravnenii”, Differentsialnye uravneniya, 1:5 (1965), 295–302 | MR | Zbl

[4] Pleshkan I. I., “Nekotoryi sposob issledovaniya na izokhronnost sistemy dvukh differentsialnykh uravnenii”, Differentsialnye uravneniya, 5:6 (1969), 1083–1090 | MR | Zbl

[5] Mardesic P., Rousseau C., Toni B., “Linearization of isochronous centers”, Journal of Differential Equations, 121:1 (1995), 67–108 | DOI | MR | Zbl

[6] Christopher C. J., Devlin J., “Isochronous centers in planar polynomial systems”, SIAM J. Math. Anal., 28:1 (1997), 162–177 | DOI | MR | Zbl

[7] Volokitin E. P., Cheresiz V. M., “Osobye tochki i pervye integraly golomorfnykh dinamicheskikh sistem”, Vestnik NGU. Seriya: Matematika, mekhanika, informatika, 2013, no. 2

[8] Villarini M., “Regularity properties of the period function near a center of a planar vector field”, Nonlinear Anal., 19:8 (1992), 787–803 | DOI | MR | Zbl

[9] Chavarriga J., Sabatini M., “A survay of isochronous centers”, Qualitative Theory of Dynamical Systems, 1 (1999), 1–70 | DOI | MR

[10] Garcia I. A., Grau M., “A survey on the inverse integrating factor”, Qualitative Theory of Dynamical Systems, 9 (2010), 115–166 | DOI | MR | Zbl

[11] Ibragimov N. Kh., Prakticheskii kurs differentsialnykh uravnenii i matematicheskogo modelirovaniya, Izd-vo Nizhegorodskogo universiteta, Nizhnii Novgorod, 2007

[12] Darboux J. G., “Mémoire sur les'{e}quations différentielles algébriques du premier ordre et du premier degré (Mélanges)”, Bull. Sci. Math., 1878, 60–96 ; 123–144 ; 151–200 | Zbl

[13] Christopher C., “Invariant algebraic curves and conditions for a centre”, Proc. R. Soc. Edinb. Sect. A, 124 (1994), 1209–1229 | DOI | MR | Zbl

[14] Ferragut A., Llibre J., “On the remarkable values of the rational first integrals of polynomial vector fields”, Journal of Differential Equations, 241 (2007), 399–417 | DOI | MR | Zbl

[15] Puankare A., O krivykh, opredelyaemykh differentsialnymi uravneniyami, Gosudarstvennoe izdatelstvo tekhnicheskoi literatury, M.–L., 1947

[16] Conti R., “Centers of planar polynomial systems. A review”, Le Matematiche, 53:2 (1998), 207–240 | MR | Zbl