Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SEMR_2013_10_a43, author = {D. Suragan and N. Tokmagambetov}, title = {On transparent boundary conditions for the high-order heat equation}, journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a}, pages = {141--149}, publisher = {mathdoc}, volume = {10}, year = {2013}, language = {en}, url = {http://geodesic.mathdoc.fr/item/SEMR_2013_10_a43/} }
TY - JOUR AU - D. Suragan AU - N. Tokmagambetov TI - On transparent boundary conditions for the high-order heat equation JO - Sibirskie èlektronnye matematičeskie izvestiâ PY - 2013 SP - 141 EP - 149 VL - 10 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SEMR_2013_10_a43/ LA - en ID - SEMR_2013_10_a43 ER -
D. Suragan; N. Tokmagambetov. On transparent boundary conditions for the high-order heat equation. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 10 (2013), pp. 141-149. http://geodesic.mathdoc.fr/item/SEMR_2013_10_a43/
[1] D. Givoli, “Recent advances in the DtN finite element method for unbounded domains”, Arch. Comput. Methods Eng., 6 (1999), 71–116 | DOI | MR
[2] T. Hagstrom, “Radiation boundary conditions for the numerical simulation of waves”, Acta Numer., 8 (1999), 47–106 | DOI | MR | Zbl
[3] S. V. Tsynkov, “Numerical solution of problems on unbounded domains”, Appl. Numer. Math., 27 (1998), 465–532 | DOI | MR | Zbl
[4] D. Givoli, “Non-reflecting boundary conditions: a review”, J. Comput. Phys., 94 (1991), 1–29 | DOI | MR | Zbl
[5] Xiaonan Wu, Jiwej Zhang, “High-order local absorbing boundary conditions for heat equation in unbounded domains”, Journal of Computational Mathematics, 1:29 (2011), 74–90 | MR | Zbl
[6] B. Engquist, A. Majda, “Radiation boundary conditions for acoustic and elastic wave calculations”, Comm. Pure Appl. Math., 32 (1979), 313–357 | DOI | MR | Zbl
[7] G. W. Hedstrom, “Nonreflecting boundary conditions for nonlinear hyperbolic systems”, J. Comput. Phys., 30 (1979), 222–237 | DOI | MR | Zbl
[8] D. Givoli, Numerical Methods for Problems in Infinite Domains, Elsevier, Amsterdam, 1992 | MR | Zbl
[9] J.-R. Li, L. Greengard, “On the numerical solution of the heat equation. I: Fast solvers in free space”, J. Comput. Phys., 226 (2007), 1891–1901 | DOI | MR | Zbl
[10] T. Sh. Kalmenov, D. Suragan, “To Spectral Problems for the Volume Potential”, Doklady Mathematics, 80:2 (2008), 646–649 | DOI | MR
[11] T. Sh. Kalmenov, D. Suragan, “A Boundary Condition and Spectral Problems for the Newton Potentials”, Operator Theory: Advances and Applications, 216, 2011, 187–210 | MR
[12] T. Sh. Kalmenov, D. Suragan, “Boundary Conditions of volume potential for the polyharmonic equation”, Differential Equation, 48:4 (2012), 604–608 | DOI
[13] T. Sh. Kalmenov, D. Suragan, “A transfer of the Sommerfeld radiation condition to a boundary of bounded domains”, Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki, 52:6 (2012), 1063–1068 (in russian)
[14] A. Ditkowski, A. Suhov, “Near-field infinity-simulating boundary conditions for the heat equation”, Proc. Natl. Acad. Sci. USA, 105 (2008), 10646–10648 | DOI | MR | Zbl
[15] N. V. Krylov, Lectures on Elliptic and Parabolic Equations in Holder Spacesy, Graduate Studies in Mathematics, 12, Amer. Math. Soc., Providence, 1996 | MR | Zbl
[16] A. Friedman, Partial differential equations of parabolic type, Prentice-Hall, 1964 | MR | Zbl
[17] G. C. Hsiao, W. L. Wendland, Boundary integral equations, Springer, Berlin, 2008
[18] L. I. Kamynin, “On smoothness of heat potentials, 2”, Differentsialnye uravneniya, 2 (1966), 647–687 (in russian) | MR | Zbl