On transparent boundary conditions for the high-order heat equation
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 10 (2013), pp. 141-149

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper we develop an artificial initial boundary value problem for the high-order heat equation in a bounded domain $\Omega$. It is found an unique classical solution of this problem in an explicit form and shown that the solution of the artificial initial boundary value problem is equal to the solution of the infinite problem (Cauchy problem) in $\Omega$.
Keywords: transparent boundary conditions, an artificial initial boundary value problem, a high-order parabolic equation.
@article{SEMR_2013_10_a43,
     author = {D. Suragan and N. Tokmagambetov},
     title = {On transparent boundary conditions for the high-order heat equation},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {141--149},
     publisher = {mathdoc},
     volume = {10},
     year = {2013},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2013_10_a43/}
}
TY  - JOUR
AU  - D. Suragan
AU  - N. Tokmagambetov
TI  - On transparent boundary conditions for the high-order heat equation
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2013
SP  - 141
EP  - 149
VL  - 10
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2013_10_a43/
LA  - en
ID  - SEMR_2013_10_a43
ER  - 
%0 Journal Article
%A D. Suragan
%A N. Tokmagambetov
%T On transparent boundary conditions for the high-order heat equation
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2013
%P 141-149
%V 10
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2013_10_a43/
%G en
%F SEMR_2013_10_a43
D. Suragan; N. Tokmagambetov. On transparent boundary conditions for the high-order heat equation. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 10 (2013), pp. 141-149. http://geodesic.mathdoc.fr/item/SEMR_2013_10_a43/