On transparent boundary conditions for the high-order heat equation
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 10 (2013), pp. 141-149.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper we develop an artificial initial boundary value problem for the high-order heat equation in a bounded domain $\Omega$. It is found an unique classical solution of this problem in an explicit form and shown that the solution of the artificial initial boundary value problem is equal to the solution of the infinite problem (Cauchy problem) in $\Omega$.
Keywords: transparent boundary conditions, an artificial initial boundary value problem, a high-order parabolic equation.
@article{SEMR_2013_10_a43,
     author = {D. Suragan and N. Tokmagambetov},
     title = {On transparent boundary conditions for the high-order heat equation},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {141--149},
     publisher = {mathdoc},
     volume = {10},
     year = {2013},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2013_10_a43/}
}
TY  - JOUR
AU  - D. Suragan
AU  - N. Tokmagambetov
TI  - On transparent boundary conditions for the high-order heat equation
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2013
SP  - 141
EP  - 149
VL  - 10
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2013_10_a43/
LA  - en
ID  - SEMR_2013_10_a43
ER  - 
%0 Journal Article
%A D. Suragan
%A N. Tokmagambetov
%T On transparent boundary conditions for the high-order heat equation
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2013
%P 141-149
%V 10
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2013_10_a43/
%G en
%F SEMR_2013_10_a43
D. Suragan; N. Tokmagambetov. On transparent boundary conditions for the high-order heat equation. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 10 (2013), pp. 141-149. http://geodesic.mathdoc.fr/item/SEMR_2013_10_a43/

[1] D. Givoli, “Recent advances in the DtN finite element method for unbounded domains”, Arch. Comput. Methods Eng., 6 (1999), 71–116 | DOI | MR

[2] T. Hagstrom, “Radiation boundary conditions for the numerical simulation of waves”, Acta Numer., 8 (1999), 47–106 | DOI | MR | Zbl

[3] S. V. Tsynkov, “Numerical solution of problems on unbounded domains”, Appl. Numer. Math., 27 (1998), 465–532 | DOI | MR | Zbl

[4] D. Givoli, “Non-reflecting boundary conditions: a review”, J. Comput. Phys., 94 (1991), 1–29 | DOI | MR | Zbl

[5] Xiaonan Wu, Jiwej Zhang, “High-order local absorbing boundary conditions for heat equation in unbounded domains”, Journal of Computational Mathematics, 1:29 (2011), 74–90 | MR | Zbl

[6] B. Engquist, A. Majda, “Radiation boundary conditions for acoustic and elastic wave calculations”, Comm. Pure Appl. Math., 32 (1979), 313–357 | DOI | MR | Zbl

[7] G. W. Hedstrom, “Nonreflecting boundary conditions for nonlinear hyperbolic systems”, J. Comput. Phys., 30 (1979), 222–237 | DOI | MR | Zbl

[8] D. Givoli, Numerical Methods for Problems in Infinite Domains, Elsevier, Amsterdam, 1992 | MR | Zbl

[9] J.-R. Li, L. Greengard, “On the numerical solution of the heat equation. I: Fast solvers in free space”, J. Comput. Phys., 226 (2007), 1891–1901 | DOI | MR | Zbl

[10] T. Sh. Kalmenov, D. Suragan, “To Spectral Problems for the Volume Potential”, Doklady Mathematics, 80:2 (2008), 646–649 | DOI | MR

[11] T. Sh. Kalmenov, D. Suragan, “A Boundary Condition and Spectral Problems for the Newton Potentials”, Operator Theory: Advances and Applications, 216, 2011, 187–210 | MR

[12] T. Sh. Kalmenov, D. Suragan, “Boundary Conditions of volume potential for the polyharmonic equation”, Differential Equation, 48:4 (2012), 604–608 | DOI

[13] T. Sh. Kalmenov, D. Suragan, “A transfer of the Sommerfeld radiation condition to a boundary of bounded domains”, Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki, 52:6 (2012), 1063–1068 (in russian)

[14] A. Ditkowski, A. Suhov, “Near-field infinity-simulating boundary conditions for the heat equation”, Proc. Natl. Acad. Sci. USA, 105 (2008), 10646–10648 | DOI | MR | Zbl

[15] N. V. Krylov, Lectures on Elliptic and Parabolic Equations in Holder Spacesy, Graduate Studies in Mathematics, 12, Amer. Math. Soc., Providence, 1996 | MR | Zbl

[16] A. Friedman, Partial differential equations of parabolic type, Prentice-Hall, 1964 | MR | Zbl

[17] G. C. Hsiao, W. L. Wendland, Boundary integral equations, Springer, Berlin, 2008

[18] L. I. Kamynin, “On smoothness of heat potentials, 2”, Differentsialnye uravneniya, 2 (1966), 647–687 (in russian) | MR | Zbl