On finite automata with quantum and classical states
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 10 (2013), pp. 676-688

Voir la notice de l'article provenant de la source Math-Net.Ru

Several quantum computational models were proposed in order to study how the quantum structure of matter could improve computational tasks. Among them, there are some that are based on finite automata, which are simpler computational devices, that helps to understand how a finite number of qubits could help to increase the power of the model. In this work, we study two-way finite automata with quantum and classical states (2QCFA), focusing on computability and complexity questions. We show results presented in the literature involving languages recognizability and closure properties and we then present some partial results on languages not recognized by the model.
Keywords: quantum automata, 2QCFA.
@article{SEMR_2013_10_a39,
     author = {A. B. Grilo and A. V. Moura},
     title = {On finite automata with quantum and classical states},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {676--688},
     publisher = {mathdoc},
     volume = {10},
     year = {2013},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2013_10_a39/}
}
TY  - JOUR
AU  - A. B. Grilo
AU  - A. V. Moura
TI  - On finite automata with quantum and classical states
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2013
SP  - 676
EP  - 688
VL  - 10
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2013_10_a39/
LA  - en
ID  - SEMR_2013_10_a39
ER  - 
%0 Journal Article
%A A. B. Grilo
%A A. V. Moura
%T On finite automata with quantum and classical states
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2013
%P 676-688
%V 10
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2013_10_a39/
%G en
%F SEMR_2013_10_a39
A. B. Grilo; A. V. Moura. On finite automata with quantum and classical states. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 10 (2013), pp. 676-688. http://geodesic.mathdoc.fr/item/SEMR_2013_10_a39/