@article{SEMR_2013_10_a38,
author = {D. A. Chumbalov},
title = {Combinatorial {Version} of the {Slepian{\textendash}Wolf} {Coding} {Theorem} for {Binary} {Strings}},
journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
pages = {656--665},
year = {2013},
volume = {10},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SEMR_2013_10_a38/}
}
D. A. Chumbalov. Combinatorial Version of the Slepian–Wolf Coding Theorem for Binary Strings. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 10 (2013), pp. 656-665. http://geodesic.mathdoc.fr/item/SEMR_2013_10_a38/
[1] D. Slepian, J. K. Wolf, “Noiseless Coding of Correlated Information Sources”, IEEE Transactions on Information Theory, 19 (1973), 471–480 | MR | Zbl
[2] A. Orlitsky, K. Viswanathan, “One-Way Communication and Error-Correcting Codes”, IEEE Transactions on Information Theory, 49:7 (2003), 1781–1788 | MR
[3] A. Chuklin, Effective protocols for low-distance file synchronization, 2011, arXiv: (in Russian) 1102.4712
[4] N. Gehrig, P. L. Dragotti, “Symmetric and asymmetric Slepian–Wolf codes with systematic and nonsystematic linear codes”, IEEE Communications Letters, 9:1 (2005), 61–63
[5] P. Tan, J. Li, “A practical and optimal symmetric Slepian–Wolf compression strategy using syndrome formers and inverse syndrome formers”, Proceeding of the 43rd Annual Allerton Conference on Communication, Control and Computing (2005)
[6] V. Guruswami, J. Hastad, M. Sudan, D. Zuckerman, “Combinatorial bounds for list decoding”, IEEE Transactions on Information Theory, 48:5 (2002), 1021–1035 | MR
[7] F. J. MacWilliams, N. J. A. Sloane, The Theory of Error-Correcting Codes, North-Holland, Amsterdam, 1977 | MR | MR | Zbl