Ranks of propelinear perfect binary codes
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 10 (2013), pp. 443-449

Voir la notice de l'article provenant de la source Math-Net.Ru

It is proven that for any numbers $n=2^m-1, m\geq 4$ and $r$, such that $n-\log(n+1)\leq r \leq n$ excluding $n=r=63$, $n=127$, $r\in\{126,127\}$ and $n=r=2047$ there exists a propelinear perfect binary code of length $n$ and rank $r$.
Keywords: propelinear perfect binary codes, rank
Mots-clés : transitive codes.
@article{SEMR_2013_10_a36,
     author = {G. K. Guskov and I. Yu. Mogilnykh and F. I. Solov'eva},
     title = {Ranks of propelinear perfect binary codes},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {443--449},
     publisher = {mathdoc},
     volume = {10},
     year = {2013},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2013_10_a36/}
}
TY  - JOUR
AU  - G. K. Guskov
AU  - I. Yu. Mogilnykh
AU  - F. I. Solov'eva
TI  - Ranks of propelinear perfect binary codes
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2013
SP  - 443
EP  - 449
VL  - 10
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2013_10_a36/
LA  - en
ID  - SEMR_2013_10_a36
ER  - 
%0 Journal Article
%A G. K. Guskov
%A I. Yu. Mogilnykh
%A F. I. Solov'eva
%T Ranks of propelinear perfect binary codes
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2013
%P 443-449
%V 10
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2013_10_a36/
%G en
%F SEMR_2013_10_a36
G. K. Guskov; I. Yu. Mogilnykh; F. I. Solov'eva. Ranks of propelinear perfect binary codes. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 10 (2013), pp. 443-449. http://geodesic.mathdoc.fr/item/SEMR_2013_10_a36/