Ranks of propelinear perfect binary codes
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 10 (2013), pp. 443-449.

Voir la notice de l'article provenant de la source Math-Net.Ru

It is proven that for any numbers $n=2^m-1, m\geq 4$ and $r$, such that $n-\log(n+1)\leq r \leq n$ excluding $n=r=63$, $n=127$, $r\in\{126,127\}$ and $n=r=2047$ there exists a propelinear perfect binary code of length $n$ and rank $r$.
Keywords: propelinear perfect binary codes, rank
Mots-clés : transitive codes.
@article{SEMR_2013_10_a36,
     author = {G. K. Guskov and I. Yu. Mogilnykh and F. I. Solov'eva},
     title = {Ranks of propelinear perfect binary codes},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {443--449},
     publisher = {mathdoc},
     volume = {10},
     year = {2013},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2013_10_a36/}
}
TY  - JOUR
AU  - G. K. Guskov
AU  - I. Yu. Mogilnykh
AU  - F. I. Solov'eva
TI  - Ranks of propelinear perfect binary codes
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2013
SP  - 443
EP  - 449
VL  - 10
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2013_10_a36/
LA  - en
ID  - SEMR_2013_10_a36
ER  - 
%0 Journal Article
%A G. K. Guskov
%A I. Yu. Mogilnykh
%A F. I. Solov'eva
%T Ranks of propelinear perfect binary codes
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2013
%P 443-449
%V 10
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2013_10_a36/
%G en
%F SEMR_2013_10_a36
G. K. Guskov; I. Yu. Mogilnykh; F. I. Solov'eva. Ranks of propelinear perfect binary codes. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 10 (2013), pp. 443-449. http://geodesic.mathdoc.fr/item/SEMR_2013_10_a36/

[1] S. V. Avgustinovich, O. Heden, F. I. Solov'eva, “On the rank and kernel problem for perfect codes”, Problems of Inform. Transm., 39:4 (2003), 341–345 | DOI | MR | Zbl

[2] J. Borges, I. Yu. Mogilnykh, J. Rifà, F. I. Solov'eva, “Structural properties of binary propelinear codes”, Advances in Math. Commun., 6:3 (2012), 329–346 | DOI | MR | Zbl

[3] J. Borges, I. Yu. Mogilnykh, J. Rifà, F. I. Solov'eva, “On the number of nonequivalent propelinear extended perfect codes”, The Electronic J. of Combinatorics, 2013 (to appear) | Zbl

[4] T. Etzion, A. Vardy, “Perfect binary codes: Constructions, properties and enumeration”, IEEE Trans. Inform. Theory, 40:3 (1994), 754–763 | DOI | MR | Zbl

[5] G. K. Guskov, F. I. Solov'eva, Properties of perfect transitive binary codes of length 15 and extended perfect transitive binary codes of length 16, 2012, arXiv: 1210.5940

[6] O. Heden, “A full rank perfect code of length 31”, Des., Codes and Cryptogr., 38:1 (2006), 125–129 | DOI | MR | Zbl

[7] M. Mollard, “A generalized parity function and its use in the construction of perfect codes”, SIAM J. Alg. Discrete Math., 7:1 (1986), 113–115 | DOI | MR | Zbl

[8] P. R. J. Östergård, O. Pottonen, The perfect binary one-error-correcting codes of length 15. Part I: Classification, 2009, arXiv: 0806.2513v3

[9] K. T. Phelps, M. J. LeVan, “Kernels of nonlinear Hamming codes”, Des., Codes and Cryptogr., 6 (1995), 247–257 | DOI | MR | Zbl

[10] J. Rifà, J. M. Basart, L. Huguet, “On completely regular propelinear codes”, Proc. 6th Int. Conference, AAECC-6, LNCS, 357, 1989, 341–355 | MR | Zbl

[11] J. Rifà, J. Pujol, “Translation invariant propelinear codes”, IEEE Trans. on Inform. Theory, 43:2 (1997), 590–598 | DOI | MR | Zbl

[12] J. Rifà, J. Pujol, J. Borges, “1-Perfect Uniform and Distance Invariant Partitions”, Appl. Algebra in Engeneering, Commun. and Computing, 11:4 (2001), 297–311 | DOI | MR | Zbl

[13] K. T. Phelps, J. Rifà, “On binary 1-perfect additive codes: some structural properties”, IEEE Trans. on Inform. Theory, 48 (2002), 2587–2592 | DOI | MR | Zbl

[14] F. I. Solov'eva, “On transitive codes”, Proc. Int. Workshop on Discrete Analysis and Operation Research (Novosibirsk, Russia, 2004), 99

[15] F. I. Solov'eva, “On the construction of transitive codes”, Problems of Information transmission, 41:3 (2005), 204–211 | DOI | MR

[16] Y. L. Vasil'ev, “On nongroup close-packed codes”, Probl. Kibernetiki, 8 (1962), 92–95 | MR

[17] W. Bosma, J. Cannon, C. Playoust, “The Magma algebra system. I: The user language”, J. Symbolic Comput., 24 (1997), 235–265 | DOI | MR | Zbl