Ranks of propelinear perfect binary codes
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 10 (2013), pp. 443-449
Voir la notice de l'article provenant de la source Math-Net.Ru
It is proven that for any numbers $n=2^m-1, m\geq 4$ and $r$, such that $n-\log(n+1)\leq r \leq n$ excluding $n=r=63$, $n=127$, $r\in\{126,127\}$ and $n=r=2047$ there exists a propelinear perfect binary code of length $n$ and rank $r$.
Keywords:
propelinear perfect binary codes, rank
Mots-clés : transitive codes.
Mots-clés : transitive codes.
@article{SEMR_2013_10_a36,
author = {G. K. Guskov and I. Yu. Mogilnykh and F. I. Solov'eva},
title = {Ranks of propelinear perfect binary codes},
journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
pages = {443--449},
publisher = {mathdoc},
volume = {10},
year = {2013},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SEMR_2013_10_a36/}
}
TY - JOUR AU - G. K. Guskov AU - I. Yu. Mogilnykh AU - F. I. Solov'eva TI - Ranks of propelinear perfect binary codes JO - Sibirskie èlektronnye matematičeskie izvestiâ PY - 2013 SP - 443 EP - 449 VL - 10 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SEMR_2013_10_a36/ LA - en ID - SEMR_2013_10_a36 ER -
G. K. Guskov; I. Yu. Mogilnykh; F. I. Solov'eva. Ranks of propelinear perfect binary codes. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 10 (2013), pp. 443-449. http://geodesic.mathdoc.fr/item/SEMR_2013_10_a36/