Mean asymmetry of polynomials on compact homogeneous spaces
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 10 (2013), pp. 566-582.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $M=G/H$ be a homogeneous space of a compact Lie group $G$, ${{\mathcal E}}$ be an $G$-invariant finite dimensional subspace of $L^2_{\mathord{\mathbb{R}}}(M)$, and ${\mathord{\mathcal{S}}}$ be the unit sphere in it. Set $\eta_a(u)=\int_M\left(u_+^a(x)-u_-^a(x)\right)\,dx$, where $u_+(x)=\max\{u(x),0\}$, $u_-(x)=-\min\{u(x),0\}$. We consider the asymptotic behavior of the variance of the random variable $\eta_a$ as $a\to\infty$ or $\dim{{\mathcal E}}\to\infty$ for the uniform distribution of $u$ in ${\mathord{\mathcal{S}}}$. For instance, if ${{\mathord{\mathcal{E}}}}$ is the space of trigonometrical polynomials of degree less or equal to $n$, then $\mathop{\mathrm{Var}}(\eta_a)\sim \frac{A}{n}$ as $n\to\infty$.
Keywords: compact homogeneous space, sums of Laplace–Beltrami eigenfunctions, defect of symmetry.
@article{SEMR_2013_10_a31,
     author = {V. M. Gichev},
     title = {Mean asymmetry of polynomials on compact homogeneous spaces},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {566--582},
     publisher = {mathdoc},
     volume = {10},
     year = {2013},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2013_10_a31/}
}
TY  - JOUR
AU  - V. M. Gichev
TI  - Mean asymmetry of polynomials on compact homogeneous spaces
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2013
SP  - 566
EP  - 582
VL  - 10
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2013_10_a31/
LA  - en
ID  - SEMR_2013_10_a31
ER  - 
%0 Journal Article
%A V. M. Gichev
%T Mean asymmetry of polynomials on compact homogeneous spaces
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2013
%P 566-582
%V 10
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2013_10_a31/
%G en
%F SEMR_2013_10_a31
V. M. Gichev. Mean asymmetry of polynomials on compact homogeneous spaces. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 10 (2013), pp. 566-582. http://geodesic.mathdoc.fr/item/SEMR_2013_10_a31/

[1] H. Donnelly, C. Fefferman, “Nodal sets of eigenfunctions on Riemannian manifolds”, Invent. Math., 93 (1988), 161–183 | DOI | MR | Zbl

[2] H. Donnelly, C. Fefferman, “Growth and geometry of eigenfunctions of the Laplacian”, Analysis and partial differential equations, Lecture Notes in Pure and Appl. Math., 122, Dekker, New York, 1990, 635–655 | MR

[3] V. M. Gichev, “Some remarks on spherical harmonics”, St. Petersburg Math. J., 20 (2009), 553–567 | DOI | MR | Zbl

[4] V. M. Gichev, “Metric properties in the mean of polynomials on compact isotropy irreducible homogeneous spaces”, Analysis and Math. Physics, 3:2 (2013), 119–144 | DOI | MR

[5] D. Jakobson, N. Nadirashvili, “Quasi-symmetry of $L^p$ norms of eigenfunctions”, Communications in Analysis and Geometry, 10 (2002), 397–408 | MR | Zbl

[6] D. Jakobson, N. Nadirashvili, J. Toth, “Geometric properties of eigenfunctions”, Russ. Math. Surv., 56:6 (2001), 1085–1105 | DOI | DOI | MR | Zbl

[7] W. B. Jurkat, J. W. van Horne, “The proof of the central limit theorem for theta sums”, Duke Math. J., 48 (1981), 873–885 | DOI | MR | Zbl

[8] D. Marinucci, I. Wigman, “The defect variance of random spherical harmonics”, J. Phys. A, Math. Theor., 44:35 (2011), 355206, 16 pp. | DOI | MR | Zbl

[9] N. S. Nadirashvili, “Metric properties of eigenfunctions of the Laplace operator on manifolds”, Ann. Inst. Fourier, 41:1 (1991), 259–265 | DOI | MR | Zbl

[10] F. Nazarov, L. Polterovich, M. Sodin, “Sign and area in nodal geometry of Laplace eigenfunctions”, Amer. J. Math., 127:4 (2005), 879–910 | DOI | MR | Zbl

[11] L. B. Pierce, “On Discrete Fractional Integral Operators and Mean Values of Weyl Sums”, Bull. Lond. Math. Soc., 43:3 (2011), 597–612 | DOI | MR | Zbl

[12] R. Salem, A. Zygmund, “On Lacunary Trigonometric Series”, Proc. Nat. Acad. Sci. USA, 33:11, November (1947), 333–338 | DOI | MR | Zbl

[13] I. Wigman, “Fluctuations of the nodal length of random spherical harmonics”, Comm. Math. Phys., 298:3 (2010), 787–831 | DOI | MR | Zbl

[14] I. Wigman, “Erratum to: Fluctuations of the Nodal Length of Random Spherical Harmonics”, Comm. Math. Phys., 309:1 (2012), 293–294 | DOI | MR | Zbl