Mean asymmetry of polynomials on compact homogeneous spaces
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 10 (2013), pp. 566-582

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $M=G/H$ be a homogeneous space of a compact Lie group $G$, ${{\mathcal E}}$ be an $G$-invariant finite dimensional subspace of $L^2_{\mathord{\mathbb{R}}}(M)$, and ${\mathord{\mathcal{S}}}$ be the unit sphere in it. Set $\eta_a(u)=\int_M\left(u_+^a(x)-u_-^a(x)\right)\,dx$, where $u_+(x)=\max\{u(x),0\}$, $u_-(x)=-\min\{u(x),0\}$. We consider the asymptotic behavior of the variance of the random variable $\eta_a$ as $a\to\infty$ or $\dim{{\mathcal E}}\to\infty$ for the uniform distribution of $u$ in ${\mathord{\mathcal{S}}}$. For instance, if ${{\mathord{\mathcal{E}}}}$ is the space of trigonometrical polynomials of degree less or equal to $n$, then $\mathop{\mathrm{Var}}(\eta_a)\sim \frac{A}{n}$ as $n\to\infty$.
Keywords: compact homogeneous space, sums of Laplace–Beltrami eigenfunctions, defect of symmetry.
@article{SEMR_2013_10_a31,
     author = {V. M. Gichev},
     title = {Mean asymmetry of polynomials on compact homogeneous spaces},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {566--582},
     publisher = {mathdoc},
     volume = {10},
     year = {2013},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2013_10_a31/}
}
TY  - JOUR
AU  - V. M. Gichev
TI  - Mean asymmetry of polynomials on compact homogeneous spaces
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2013
SP  - 566
EP  - 582
VL  - 10
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2013_10_a31/
LA  - en
ID  - SEMR_2013_10_a31
ER  - 
%0 Journal Article
%A V. M. Gichev
%T Mean asymmetry of polynomials on compact homogeneous spaces
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2013
%P 566-582
%V 10
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2013_10_a31/
%G en
%F SEMR_2013_10_a31
V. M. Gichev. Mean asymmetry of polynomials on compact homogeneous spaces. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 10 (2013), pp. 566-582. http://geodesic.mathdoc.fr/item/SEMR_2013_10_a31/