The computation of megamaps
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 10 (2013), pp. 170-179.

Voir la notice de l'article provenant de la source Math-Net.Ru

Here we compute some dessins d'enfants, corresponding to the strata of dimension 1 in the spaces of the rational functions of degree less than 6 on the curves of genus 0, 1, 2.
Keywords: megamap, Beliy function, ramified covering, braid group.
Mots-clés : dessin d'enfant
@article{SEMR_2013_10_a27,
     author = {B. S. Bychkov},
     title = {The computation of megamaps},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {170--179},
     publisher = {mathdoc},
     volume = {10},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2013_10_a27/}
}
TY  - JOUR
AU  - B. S. Bychkov
TI  - The computation of megamaps
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2013
SP  - 170
EP  - 179
VL  - 10
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2013_10_a27/
LA  - ru
ID  - SEMR_2013_10_a27
ER  - 
%0 Journal Article
%A B. S. Bychkov
%T The computation of megamaps
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2013
%P 170-179
%V 10
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2013_10_a27/
%G ru
%F SEMR_2013_10_a27
B. S. Bychkov. The computation of megamaps. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 10 (2013), pp. 170-179. http://geodesic.mathdoc.fr/item/SEMR_2013_10_a27/

[1] G. V. Belyi, “O rasshireniyakh Galua maksimalnogo krugovogo polya”, Izv. AN SSSR. Ser. matem., 43:2 (1979), 267–276 | MR | Zbl

[2] A. K. Zvonkin, S. K. Lando, Grafy na poverkhnostyakh i ikh prilozheniya, MTsNMO, 2010

[3] S. Diaz, R. Donagi, D. Harbater, “Every curve is a Hurwitz space”, Duke Math. J., 59:3 (1989), 737–746 | DOI | MR | Zbl

[4] A. Grothendieck, Esquisse d'un programme, 1984

[5] M. Fried, “Fields of definition of function fields and Hurwitz families — groups as Galois groups”, Comm. Algebra, 5:1 (1977), 17–82 | DOI | MR | Zbl

[6] A. Hurwitz, “Uber Riemann'sche Flächen mit gegebenen Verzweigungspunkten”, Math. Ann., 39 (1891), 1–61 | DOI | MR

[7] S. Lando, D. Zvonkine, “Counting ramified converings and intersection theory on spaces of rational functions. I: Cohomology of Hurwitz spaces”, Mosc. Math. J., 7:1 (2007), 85–-107 | MR | Zbl

[8] A. Zvonkin, “Megamaps: Construction and Examples”, Discrete Math. Theor. Comput. Sci., Conference edition: Discrete Models: Combinatorics, Computation and Geometry (July 2001), 329–339 | MR