Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SEMR_2013_10_a27, author = {B. S. Bychkov}, title = {The computation of megamaps}, journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a}, pages = {170--179}, publisher = {mathdoc}, volume = {10}, year = {2013}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/SEMR_2013_10_a27/} }
B. S. Bychkov. The computation of megamaps. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 10 (2013), pp. 170-179. http://geodesic.mathdoc.fr/item/SEMR_2013_10_a27/
[1] G. V. Belyi, “O rasshireniyakh Galua maksimalnogo krugovogo polya”, Izv. AN SSSR. Ser. matem., 43:2 (1979), 267–276 | MR | Zbl
[2] A. K. Zvonkin, S. K. Lando, Grafy na poverkhnostyakh i ikh prilozheniya, MTsNMO, 2010
[3] S. Diaz, R. Donagi, D. Harbater, “Every curve is a Hurwitz space”, Duke Math. J., 59:3 (1989), 737–746 | DOI | MR | Zbl
[4] A. Grothendieck, Esquisse d'un programme, 1984
[5] M. Fried, “Fields of definition of function fields and Hurwitz families — groups as Galois groups”, Comm. Algebra, 5:1 (1977), 17–82 | DOI | MR | Zbl
[6] A. Hurwitz, “Uber Riemann'sche Flächen mit gegebenen Verzweigungspunkten”, Math. Ann., 39 (1891), 1–61 | DOI | MR
[7] S. Lando, D. Zvonkine, “Counting ramified converings and intersection theory on spaces of rational functions. I: Cohomology of Hurwitz spaces”, Mosc. Math. J., 7:1 (2007), 85–-107 | MR | Zbl
[8] A. Zvonkin, “Megamaps: Construction and Examples”, Discrete Math. Theor. Comput. Sci., Conference edition: Discrete Models: Combinatorics, Computation and Geometry (July 2001), 329–339 | MR